Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Micro-Nano Technology for Genomics and Proteomics BioMEMs - Ozkan

.pdf
Скачиваний:
63
Добавлен:
10.08.2013
Размер:
10.41 Mб
Скачать

xii

 

 

CONTENTS

 

9.4.2 DNA Sequencing ..........................................................

..... 320

 

9.4.3 DNA Sample Purification ................................................

..... 321

9.5

Protein Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 322

 

9.5.1

Isoelectric Focusing for Studying Protein Interactions .............

..... 323

 

9.5.2

Enzymatic Digestion for Protein Mapping ............................

..... 324

 

Concluding Remarks..............................................................

..... 326

 

Acknowledgements ...............................................................

..... 326

 

References ..........................................................................

..... 326

10. Centrifuge Based Fluidic Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 329

Jim V. Zoval and M.J. Madou

 

10.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 329

10.2

Why Centrifuge as Fluid Propulsion Force? . . . . . . . . . . . . . . . . . . . . . . . .

. . . 330

10.3

Compact Disc or Micro-Centrifuge Fluidics . . . . . . . . . . . . . . . . . . . . . . . .

. . . 333

 

10.3.1 How it Works .............................................................

..... 333

10.4 Some Simple Fluidic Function Demonstrated on a CD . . . . . . . . . . . . . .

. . . . 334

 

10.4.1

Mixing of Fluid ..........................................................

..... 334

 

10.4.2

Valving ....................................................................

..... 335

 

10.4.3 Volume Definition (Metering) and Common

 

 

 

Distribution Channels ...................................................

..... 338

 

10.4.4 Packed Columns .........................................................

..... 339

10.5 CD Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 339

 

10.5.1

Two-Point Calibration of an Optode-Based Detection System .

..... 339

 

10.5.2 CD Platform for Enzyme-Linked Immunosorbant

 

 

 

Assays (ELISA) ..........................................................

..... 340

 

10.5.3

Multiple Parallel Assays ................................................

..... 341

 

10.5.4 Cellular Based Assays on CD Platform ..............................

..... 342

 

10.5.5 Automated Cell Lysis on a CD ........................................

..... 344

 

10.5.6

Integrated Nucleic Acid Sample Preparation and

 

 

 

PCR Amplification ......................................................

..... 356

 

10.5.7 Sample Preparation for MALDI MS Analysis .....................

..... 358

 

10.5.8 Modified Commercial CD/DVD Drives in

 

 

 

Analytical Measurements ..............................................

..... 359

 

Conclusion..........................................................................

..... 361

 

Acknowledgements ...............................................................

..... 362

 

References ..........................................................................

..... 362

11. Sequencing the Human Genome: A Historical Perspective

 

On Challenges For Systems Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 365

Lee Rowen

 

 

11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 365

11.2 Approaches Used to Sequence the Human Genome . . . . . . . . . . . . . . . . .

. . . . 366

 

11.2.1 Overview...................................................................

..... 366

 

11.2.2

Strategy Used for Sequencing Source Clones.......................

..... 368

 

11.2.3

Construction of the Chromosome Tiling Paths .....................

..... 379

 

11.2.4

Data Sharing ..............................................................

..... 379

CONTENTS

 

xiii

11.3

Challenges for Systems Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

380

 

11.3.1

Methodological Challenges for Sequencing Source

 

 

 

Clones: 1990–1997 ...........................................................

381

 

11.3.2

Challenges for Sequencing the Entire Human

 

 

 

Genome: 1998–2003..........................................................

386

11.4

Are there Lessons to be Learned from the Human Genome Project? . . . . . .

395

 

Acknowledgements ....................................................................

397

 

References ...............................................................................

398

III. Nanoprobes for Imaging, Sensing and Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . .

401

12. Hairpin Nanoprobes for Gene Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

403

Philip Santangelo, Nitin Nitin, Leslie LaConte, and Gang Bao

 

12.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

403

12.2

Nanoprobe Design Issues for Homogeneous Assays . . . . . . . . . . . . . . . . . . . .

405

12.3

In Vitro Gene Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

408

 

12.3.1

Pathogen Detection ...........................................................

409

 

12.3.2

Mutation Detection and Allele Discrimination ..........................

409

12.4

Intracellular RNA Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

411

 

12.4.1 Cytoplasmic and Nuclear RNA .............................................

411

 

12.4.2 RNA Secondary Structure ...................................................

418

12.5

Living Cell RNA Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

418

 

12.5.1

Cellular Delivery of Probes..................................................

419

 

12.5.2

Intracellular Probe Stability .................................................

424

 

12.5.3

Intracellular mRNA Detection ..............................................

428

12.6

Opportunities and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

431

 

Acknowledgements ....................................................................

433

 

References ...............................................................................

433

13. Fluorescent Lanthanide Labels with Time-Resolved Fluorometry

 

In DNA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

437

Takuya Nishioka, Jingli Yuan, and Kazuko Matsumoto

 

13.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

437

13.2

Lanthanide Fluorescent Complexes and Labels . . . . . . . . . . . . . . . . . . . . . . . . .

438

13.3

Time-Resolved Fluorometry of Lanthanide Complexes . . . . . . . . . . . . . . . . .

441

13.4

DNA Hybridization Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

442

 

Conclusion...............................................................................

445

 

References ...............................................................................

445

14.Role of SNPs and Haplotypes in Human Disease and Drug Development . . 447

Barkur S. Shastry

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

14.2 SNP Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

14.3 Detection of Genetic Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

14.4 Disease Gene Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

xiv

CONTENTS

14.5

Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

450

14.6

Haplotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

452

14.7

Drug Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

452

 

Concluding Remarks...................................................................

454

 

References ...............................................................................

454

15. Control of Biomolecular Activity by Nanoparticle Antennas . . . . . . . . . . . . . .

459

Kimberly Hamad-Schifferli

 

15.1

Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

459

 

15.1.1 ATP Synthase as a Molecular Motor ......................................

459

 

15.1.2 Biological Self Assembly of Complex Hybrid Structures ............

461

 

15.1.3 DNA as a Medium for Computation ......................................

463

 

15.1.4 Light Powered Nanomechanical Devices .................................

463

15.2

Nanoparticles as Antennas for Controlling Biomolecules . . . . . . . . . . . . . . . .

465

 

15.2.1 Technical Approach...........................................................

468

 

15.2.2 Dehybridization of a DNA Oligonucleotide Reversibly by

 

 

RFMF Heating of Nanoparticles ...........................................

469

 

15.2.3 Determination of Effective Temperature by RFMF

 

 

Heating of Nanoparticles ....................................................

469

 

15.2.4 Selective Dehybridization of DNA Oligos by RFMF

 

 

Heating of Nanoparticles ....................................................

471

 

Conclusions and Future Work .......................................................

473

 

References ...............................................................................

474

16. Sequence Matters: The Influence of Basepair Sequence

 

on DNA-protein Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

477

Yan Mei Wang, Shirley S. Chan, and Robert H. Austin

 

16.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

477

16.2

Generalized Deformations of Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

481

16.3

Sequence Dependent Aspects to the Double Helix Elastic Constants . . . . . .

484

16.4

Sequence Dependent Bending of the Double Helix and the

 

 

Structure Atlas of DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

485

16.5

Some Experimental Consequences of Sequence Dependent Elasticity . . . . .

486

 

16.5.1 Phage 434 Binding Specificity and DNase I Cutting Rates ...........

486

 

16.5.2 Nucleosome Formation: Sequence and Temperature Dependence ...

491

 

Conclusions..............................................................................

494

 

References ...............................................................................

494

17. Engineered Ribozymes: Efficient Tools for Molecular

 

Gene Therapy and Gene Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

497

Maki Shiota, Makoto Miyagishi, and Kazunari Taira

 

17.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

497

17.2

Methods for the Introduction of Ribozymes into Cells . . . . . . . . . . . . . . . . . . .

498

17.3

Ribozyme Expression Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

499

 

17.3.1 The Pol III System ............................................................

499

CONTENTS

 

xv

17.3.2

Relationship Between the Higher-Order Structure of

 

 

Ribozymes and their Activity ..............................................

500

17.3.3

Subcellular Localization and Efficacy of Ribozymes...................

501

17.3.4 Mechanism of the Export of tRNA-Ribozymes from the

 

 

Nucleus to the Cytoplasm ...................................................

504

17.4 RNA-Protein Hybrid Ribozymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

505

17.4.1

Accessibility to Ribozymes of their Target mRNAs ....................

505

17.4.2

Hybrid Ribozymes that Efficiently Cleave their Target mRNAs,

 

 

Regardless of Secondary Structure ........................................

505

17.5 Maxizymes: Allosterically Controllable Ribozymes . . . . . . . . . . . . . . . . . . . . .

508

17.5.1 Shortened Hammerhead Ribozymes that Function as Dimers ........

508

17.5.2

Design of an Allosterically Controllable Maxizyme....................

509

17.5.3 Inactivation of an Oncogene in a Mouse Model .........................

512

17.5.4 Generality of the Maxizyme Technology ................................

512

17.6 Identification of Genes Using Hybrid Ribozymes . . . . . . . . . . . . . . . . . . . . . . .

513

17.7 Summary and Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

515

References ...............................................................................

516

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

519

Index . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

521

List of Contributors

VOLUME II

Joanna S. Albala, Biology & Biotechnology Research Program, Lawerence Livermore National Laboratory, Livermore, California USA

Robert H. Austin, Dept. of Physics, Princeton University, Princeton, New Jersey USA

Gang Bao, Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia USA

Shirley S. Chan, Dept. of Physics, Princeton University, Princeton, New Jersey USA

Maureen Cronin, Genomic Health, Inc., Redwood City, California USA

Z. Hugh Fan, Dept. of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida USA

Mauro Ferrari, Ph.D., Professor, Brown Institute of Molecular Medicine Chairman, Department of Biomedical Engineering, University of Texas Health Science Center, Houston, TX; Professor of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX; Professor of Bioengineering, Rice University, Houston, TX; Professor of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX; President, the Texas Alliance for NanoHealth, Houston, TX

Kimberly Hamad-Schifferli, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts USA

Michael J. Heller, Dept. of Bioengineering, University of California, San Diego, La Jolla, California USA

Dalibor Hodko, Nanogen Inc., San Diego, California USA

Dr. Ying Huang, Nanogen Inc., San Diego, California USA

Pappanaicken R. Kumaresan, Division of Hematology/Oncology & Internal Medicine, University of California Davis, Sacramento, California USA

xviii

LIST OF CONTRIBUTORS

Leslie LaConte, Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia USA

Kit S. Lam, Division of Hematology/Oncology & Internal Medicine, University of California Davis, Sacramento, California USA

Graham Lidgard, Nanogen Inc., San Diego, California USA

Mei-Lan Liu, Genomic Health, Inc., Redwood City, California USA

Ruiwu Liu, Division of Hematology/Oncology & Internal Medicine, University of California Davis, Sacramento, California USA

M.J. Madou, Dept. of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California USA

Jan Marik, Division of Hematology/Oncology & Internal Medicine, University of California Davis, Sacramento, California USA

Kazuko Matsumoto, Dept. of Chemistry and Advanced Research Institute for Science & Engineering, Waseda University, Tokyo, Japan

Makoto Miyagishi, Dept. of Chemistry and Biotechnology, The University of Tokyo, Tokyo, Japan

Takuya Nishioka, Dept. of Chemistry and Advanced Research Institute for Science & Engineering, Waseda University, Tokyo, Japan

Nitin Nitin, Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia USA

Cengiz S. Ozkan, Dept. of Mechanical Engineering, University of California, Riverside, Riverside, California USA

Prof. Mihrimah Ozkan, Dept. of Electrical Engineering, University of California, Riverside, Riverside, California USA

Prof. Ronald Pethig, School of Informatics, University of Wales, Bangor, Gwynedd, United Kingdom

Shalini Prasad, Dept. of Electrical Engineering, University of California, Riverside, Riverside, California USA

Ulrich Reineke, Jerini AG, Berlin, Germany

Antonio J. Ricco, NASA Ames Research Center, Mountain View, California USA

Lee Rowen, Institute for Systems Biology, Seattle, Washington USA

LIST OF CONTRIBUTORS

xix

Philip Santangelo, Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia USA

Jens Schneider-Mergener, Institut fur¨ Medizinische Immunologie, Universit¨atsklinikum Charit´e, Berlin, Germany

Mike Schutkowski, Jerini AG, Berlin, Germany

Barkur S. Shastry, Dept. of Biological Sciences, Oakland University, Rochester, Michigan USA

Maki Shiota, Dept. of Chemistry and Biotechnology, The University of Tokyo, Tokyo, Japan

Dominick Sinicropi, Genomic Health, Inc., Redwood City, California USA

Daniel Smolko, Nanogen Inc., San Diego, California USA

Kazunari Taira, Dept. of Chemistry and Biotechnology, The University of Tokyo, Tokyo, Japan

Yan Mei Wang, Dept. of Physics, Princeton University, Princeton, New Jersey USA

Mo Yang, Dept. of Mechanical Engineering, University of California, Riverside, Riverside, California USA

Jingli Yuan, Dept. of Chemistry and Advanced Research Institute for Science & Engineering, Waseda University, Tokyo, Japan

Xuan Zhang, Dept of Mechanical Engineering, University of California, Riverside, Riverside, California USA

Jim V. Zoval, Dept. of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California USA

Foreword

Less than twenty years ago photolithography and medicine were total strangers to one another. They had not yet met, and not even looking each other up in the classifieds. And then, nucleic acid chips, microfluidics and microarrays entered the scene, and rapidly these strangers became indispensable partners in biomedicine.

As recently as ten years ago the notion of applying nanotechnology to the fight against disease was dominantly the province of the fiction writers. Thoughts of nanoparticle-vehicled delivery of therapeuticals to diseased sites were an exercise in scientific solitude, and grounds for questioning one’s ability to think “like an established scientist”. And today we have nanoparticulate paclitaxel as the prime option against metastatic breast cancer, proteomic profiling diagnostic tools based on target surface nanotexturing, nanoparticle contrast agents for all radiological modalities, nanotechnologies embedded in high-distribution laboratory equipment, and no less than 152 novel nanomedical entities in the regulatory pipeline in the US alone.

This is a transforming impact, by any measure, with clear evidence of further acceleration, supported by very vigorous investments by the public and private sectors throughout the world. Even joining the dots in a most conservative, linear fashion, it is easy to envision scenarios of personalized medicine such as the following:

patient-specific prevention supplanting gross, faceless intervention strategies;

early detection protocols identifying signs of developing disease at the time when the disease is most easily subdued;

personally tailored intervention strategies that are so routinely and inexpensively realized, that access to them can be secured by everyone;

technologies allowing for long lives in the company of disease, as good neighbors, without impairment of the quality of life itself.

These visions will become reality. The contributions from the worlds of small-scale technologies are required to realize them. Invaluable progress towards them was recorded by the very scientists that have joined forces to accomplish the effort presented in this 4-volume collection. It has been a great privilege for me to be at their service, and at the service of the readership, in aiding with its assembly. May I take this opportunity to express my gratitude to all of the contributing Chapter Authors, for their inspired and thorough work. For many of them, writing about the history of their specialty fields of BioMEMS and Biomedical Nanotechnology has really been reporting about their personal, individual adventures through scientific discovery and innovation—a sort

xxii

FOREWORD

of family album, with equations, diagrams, bibliographies and charts replacing Holiday pictures . . . .

It has been a particular privilege to work with our Volume Editors: Sangeeta Bhatia, Rashid Bashir, Tejal Desai, Michael Heller, Abraham Lee, Jim Lee, Mihri Ozkan, and Steve Werely. They have been nothing short of outstanding in their dedication, scientific vision, and generosity. My gratitude goes to our Publisher, and in particular to Greg Franklin for his constant support and leadership, and to Angela De Pina for her assistance.

Most importantly, I wish to express my public gratitude in these pages to Paola, for her leadership, professional assistance throughout this effort, her support and her patience. To her, and our children Giacomo, Chiara, Kim, Ilaria and Federica, I dedicate my contribution to BioMEMS and Biomedical Nanotechnology.

With my very best wishes

Mauro Ferrari, Ph.D.

Professor, Brown Institute of Molecular Medicine Chairman

Department of Biomedical Engineering

University of Texas Health Science Center, Houston, TX

Professor of Experimental Therapeutics

University of Texas M.D. Anderson Cancer Center, Houston, TX

Professor of Bioengineering

Rice University, Houston, TX

Professor of Biochemistry and Molecular Biology

University of Texas Medical Branch, Galveston, TX

President, the Texas Alliance for NanoHealth

Houston, TX

Preface

Numerous miniaturized DNA microarray, DNA chip, Lab on a Chip and biosensor devices have been developed and commercialized. Such devices are improving the way many important genomic and proteomic analyses are performed in both research and clinical diagnostic laboratories. The development of these technologies was enabled by a synergistic combination of disciplines that include microfabrication, microfluidics, MEMS, organic chemistry and molecular biology. Some of these new devices and technologies utilize sophisticated microfabrication processes developed by the semiconductor industry. Microarrays with large numbers of test sites have been developed which employ photolithography combinatorial synthesis techniques or ink jet type printing deposition methods to produce high-density DNA microarrays. Other microarray technologies have incorporated microelectrodes to produce electric fields which are able to affect the transport and hybridization of DNA molecules on the surface of the device. As remarkable as this generation of devices and technological appears, the advent of new nanoscience and nanofabrication techniques will lead to even further miniaturization, higher integration and another generation of devices with higher performance properties. Thus, in some sense these devices and systems will follow a similar evolution as did microelectronics in going from 8 bit, to 16 bit to 32 bit technology. Where feature sizes for integrated components of microelectronic devices is now well into the submicron scale, nanoscale biodevices will soon follow. Likewise, the potential applications for this new generation of micro/nanoarray, lab on a chip and nanosensor devices is also broadening into areas of whole genome sequencing, biowarfare agent detection, and remote environmental sensing and monitoring. Today the possibility of making highly sophisticated smart micro/nano scale in-vivo diagnostic and therapeutic delivery devices is being seriously considered.

Nevertheless, considerable problems do exist. Unfortunately, many applications for these bioresearch or biomedically related devices do not have the large consumer markets that will drive and fund their development. The economic forces which drive the development of high volume retail consumer microelectronic and optoelectonic devices (such as computers, cell phones, digital cameras, and fiber optic communications), are not there for most bioresearch or biomedical devices. Thus, it is very common to see so-called “good” technologies in the bioresearch and biomedical device area fail somewhere along the arduous path to commercialization. This is particularly true for any biomedical device or system which has to go through the regulatory process. Frequently, the problem relates to the inability to economically manufacture a viable device for commercialization as opposed to a working prototype device. Thus, a key aspect for achieving final success for our new