Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сальников_ОТС_Часть-2.doc
Скачиваний:
140
Добавлен:
03.05.2015
Размер:
4.26 Mб
Скачать

Рекомендации по проведению экспериментальных исследований оптимального когерентного приема

Для закрепления знаний, полученных при изучении разделов 6.1-6.3, целесообразно выполнить лабораторные работы № 15 «Исследование когерентных демодуляторов» (рис. 6.19, 6.20) и № 22 «Согласованная фильтрация сигналов известной формы» (рис. 6.21 – 6.24) в полных объемах, а также дополнительные экспериментальные исследования в рамках предоставляемых этими работами ресурсов. Обратите внимание на общее и различное в реакциях корреляторов и согласованных фильтров на «свои» и «чужие» сигналы, на связи с АЧХ СФ с амплитудными спектрами «своих» сигналов.

При исследовании согласованных фильтров убедитесь в соответствии их импульсных характеристик, АЧХ и реакций на «свои» сигналы теоретическим результатам, полученным выше. Убедитесь также, что отсчет реакции СФ на «свой» сигнал в момент времени t0 = T всегда больше отсчета на любой «чужой» сигнал. Обратите также внимание на минимальный уровень боковых лепестков корреляционной функции кода Баркера по сравнению с любыми иными двоичными последовательностями той же длины (рис. 6.23).

Убедитесь в широких возможностях формирования F-финитных сигналов различных форм с помощью трансверсального фильтра и согласованной фильтрации такого рода сигналов (рис. 6.24).

6.4. Потенциальная помехоустойчивость когерентного приема Постановка задачи:

Известны:

  1. Ансамбль сигналов на выходе модулятора

{si(t)}m; i = 1, 2,…, m; t  (0, T).

  1. Непрерывный канал

,

где N(t) – квазибелый нормальный шум, т. е.

.

  1. Алгоритм работы демодулятора (оптимального когерентного по критерию максимального правдоподобия) (6.13)

.

Определить Р - среднюю вероятность ошибочного приема.

Ограничимся случаем двоичной системы (m = 2), когда

.

Перепишем алгоритм (6.13) в развернутом виде

,

или

.

Из иной записи того же алгоритма

вытекает достаточность одной ветви в оптимальном демодуляторе, которая должна содержать либо коррелятор с опорным генератором разностного сигнала, либо согласованный с этим разностным сигналом фильтр (рис. 6.25). В этих демодуляторах в качестве решающих устройств используются компараторы со стробированием. Компаратор представляет собой дифференциальный усилитель с цифровым выходом и коэффициентом усиления К . Напряжение на выходе компаратора может принимать одно из двух значений: высокое (уровень логической «1»), если напряжение на его прямом входе больше, чем на инверсном, и низкое (уровень логического «0») в противном случае. В данном случае производится сравнение выходного напряжения коррелятора или СФ с пороговым в моменты kT поступления коротких стробирующих импульсов. Символом «= =» в УГО компаратора обозначена операция сравнения, а кружком – инверсный вход.

Для решения поставленной задачи рассмотрим случайную величину Y(T) – отсчеты реакции СФ в конце каждого сигнала на входной СП Z(t) = si(t) + N(t). Очевидно, что Y(T) имеет нормальное распределение с двумя возможными математическими ожиданиями :

y0 – при передаче сообщения b0,

y1 – при передаче сообщения b1.

, .

Условные распределения величины Y(T) показаны на рис. 6.26

В двоичных системах имеют место ошибки двух типов. Определим их вероятности

, .

Средняя вероятность ошибочного приема

.

При равных вероятностях передаваемых сообщений

.

Минимизация Р означает минимизацию суммы S0 + S1, что достигается при выборе оптимального порога λопт, определяемого из условия (рис. 6.26)

.

При таком выборе порога

и, следовательно, для вычисления средней вероятности ошибочного приема Р достаточно определить любую условную вероятность ошибок, например,

.

Произведя замену переменных

,

получим

, (6.18)

где Qопт) – дополнительная функция ошибок,

Fопт) – функция ошибок,

Ф(νопт) – функция Крампа.

Все эти функции табулированы, их можно найти в математических справочниках.

Полученный результат свидетельствует, что для любой двоичной системы при когерентном приеме вероятность ошибок определяется исключительно величиной νопт,на которой сосредоточим свое внимание. Из рассмотренного вытекает

,

где – математическое ожидание отклика фильтра, согла-

сованного с разностным сигналом sЭ(t) = s1(t) – s0(t),

на «свой» сигнал в момент t = T,

σ – квадратный корень из дисперсии этого отклика.

Используя ранее вычисленное значение отношения с/ш на выходе согласованного фильтра (6.17), получаем

, (6.18)

где ЕЭ – энергия разностного (эквивалентного) сигнала sэ(t),

NO – спектральная плотность мощности шума,

.

Учитывая геометрический смысл энергии сигнала, выражение (6.18) можно переписать в виде

.

Выводы

1. Помехоустойчивость когерентного приема в двоичных системах определяется исключительно соотношением энергии ЕЭ разностного сигнала (расстоянием между сигналами) и спектральной плотности мощности NO нормального белого шума

. (6.19)

2. Средняя вероятность ошибочного приема для этого случая вычисляется с помощью дополнительной функции ошибок по формуле

(6.20)