
- •Лекции по общей химии Введение.
- •Основные законы химии.
- •Стехиометрические законы.
- •Газовые законы.
- •3. Уравнение состояния идеального газа (Клапейрона-Менделеева).
- •Строение атома
- •Квантово-механическая модель строения атома
- •Лекция 3. Периодический закон и электронные конфигурации атомов.
- •Радиусы атомов. Потенциал ионизации. Сродство к электрону. Электроотрицательность.
- •Лекции 2, 3 Химическая связь. Метод молекулярных орбиталей (ммо).
- •Рассмотрим молекулы нf и ВеН2, в которых имеет место образование несвязывающих мо. Сравнение методов мвс и ммо.
- •О валентности.
- •Металлическая связь.
- •Ионная связь.
- •Водородная связь.
- •Межмолекулярные взаимодействия.
- •Взаимосвязь между типом хс и свойствами веществ.
- •Стеклообразное состояние вещества.
- •Применение процессов возбуждения электронов для практических целей.
- •Основы химической термоднамики. Функции состояния.
- •Внутренняя энергия
- •Энтальпия.
- •Энтропия.
- •2 Закон (Начало)т/д: в изолированной системе самопроизвольно протекают только такие процессы, которые ведут к росту энтропии.
- •Энергия Гиббса.
- •Энергия Гельмгольца.
- •Кинетика химических реакций.
- •Зависимость скорости реакции от температуры.
- •Катализ.
- •Цепные реакции.
- •Химическое равновесие.
- •Растворы.
- •Свойства разбавленных растворов неэлектролитов (коллигативные свойства – независящие от природы вещества).
- •Осмос и осмотическое давление.
- •Диссоциация кислот, оснований, солей.
- •Протонная теория кислот и оснований Бренстеда и Лоури.
- •Произведение растворимости.
- •Особенности растворов сильных электролитов.
- •Ионные реакции в растворах электролитов.
- •Комплексные соединения.
- •Количественные характеристики процесса гидролиза.
- •Буферные растворы.
- •Окислительно-восстановительные реакции.
- •Окислительно-восстановительная двойственность.
- •Составление уравнений овр.
- •Окислительно-восстановительный (электродный) потенциал.
- •Окислительно-восстановительная способность двух форм электрохимической системы.
- •Эдс как количественная характеристика возможности протекания окислительно-восстановительного процесса.
- •Окислительно-восстановительная способность двух форм электрохимической системы.
- •Уравнение Нернста.
- •1.Взаимодействие металлов с водой.
- •2.Взаимодействие металлов с растворами щелочей.
- •3.Взаимодействие металлов с кислотами, в которых окислитель – катион водорода.
- •4.Взаимодействие металлов с концентрированной серной кислотой.
- •Взаимодействие концентрированной серной с неметаллами-восстановителями.
- •5.Взаимодействие металлов с азотной кислотой (разб. И конц.).
- •Взаимодействие азотной кислоты с неметаллами
- •Взаимодействие металлов с растворами солей.
- •Окислительно-восстановительные свойства воды.
- •Коррозия металлов
- •Газовая коррозия
- •Образование оксидной пленки на металлах
- •Атмосферная коррозия
- •Электрохимическая коррозия
- •Методы защиты от коррозии.
- •1. Модификация самого металла:
- •2.Отделение (предохранение) металла от окружающей среды с помощью защитных покрытий (неметаллических):
- •3.Металлические защитные покрытия.
- •4.Электорохимические методы защиты (суть – заставить разрушаться болванкам).
- •5.Специальная обработка электролита или среды, в которой находится металл (удаление или уменьшение концентрации веществ, вызывающих коррозию).
- •6.Химическая обработка для повышения коррозионной стойкости (пассивация поверхности металла) - то, что не использовалось в выше приведенных методах, часто в расплавах или при повышенных температурах.
- •Измерение э.Д.С. Химических источников тока.
- •Химические источники электрической энергии (хиээ)
- •Аккумуляторы.
- •Типы аккумуляторов
- •Свинцово-кислотные аккумуляторы.
- •Принцип действия
- •Устройство
- •Литий-ионные аккумуляторы.
- •Литиевые элементы различных электрохимических систем
- •Электролиз.
- •Законы электролиза м. Фарадея.
- •Практическое применение электролиза.
- •Электрофорез и электродиализ.
- •Металлы и сплавы.
- •Классификация металлов.
- •Основные методы получения металлов.
- •Получение металлов высокой чистоты.
- •Металлы и сплавы
Окислительно-восстановительная двойственность.
Существуют вещества, которые в одних реакциях проявляют свойства окислителя, в других – восстановителя. Окислительно-восстановительная двойственность характерна для а) атомов и молекул неметаллов IVA-VIIA подгрупп, а также бора и водорода; б) атомов элементов с переменной валентностью (S, Cl,Br); в) пероксидные соединения (Н2О2, ВаО2 и др.).
S2- - восстановитель → So ↔ S4+ ← S6+ - окислитель
окислитель-восстановитель
(окислительно-восстановительная двойственность)
So и S4+ обладают окислительно-восстановительной двойственностью, например, в реакциях: 2SO2 + O2 = 2SO3 SO2 +2H2S = 3S +2Н2О
В-ль Ок-ль
-1 + е 0 – е +1 - 2е +3 -2е +5 -2е +7
Cl ← Cl → Cl → Cl → Cl → Cl
НClO – хлорноватистая (гипохлориты)
HClO2 – хлористая (хлориты)
HClO3 – хлорноватая (хлораты)
HClO4 – хлорная (перхлораты)
-1-е 0-е +1
Н ← Н → Н
Кроме серы к пункту «б» относятся соединения марганца. Все формы его соединений со степенями окисления +2, +3, +4, +6 в зависимости от условий могут проявлять окислительные или восстановительные свойства.
MnO2 + 4HCl = MnCl2 + Cl2 + 2H2O окислитель Mn4+ + 2e = Mn2+
вос-ль 2Cl- - 2e = Cl2
MnO2 + KNO3 + K2CO3 = K2MnO4 + KNO2 + CO2
вос-ль Mn4+ - 2e = Mn6+
ок-ль N5+ +2e = N3+
Пероксидные соединения имеют двойственный характер поведения в окислительно-восстановительных процессах, что обусловлено природой связи в атомах и молекулах. Атомы кислорода связаны единичной неполяной ковалентной связью. Так как общая электронная пара расположена симметрично относительно обоих ядер, то данная связь не участвует в изменении степени окисления атомов кислорода. Зато полярная коволентная связь с водородом обеспечивает степень окисления -1 каждому атому кислорода. С одной стороны – молекула Н2О2 может распадаться с разрывом кислородной связи и образовывать новые связи кислорода с другими атомами. В результате уменьшается степень окисления кислорода до -2 (окислитель - О22- + 2е = 2О2-). С другой стороны в пероксиде водорода разрываются связи О-Н, в результате образуется молекула О2, и степень окисления кислорода повышается до нуля ( вос-ль - О22- - 2е = О2).
Ge + 2H2O2 + 2NaOH = Na2GeO3 + 3H2O
2AgNO3 + 2H2O2 + 2NH4OH = O2 + 2Ag +2NH4NO3 + 2H2O.
Влияние температуры на ОВР.
Температура влияет на глубины протекания реакции. При низкой и высокой температуре могут получиться разные продукты реакции:
Cl2 + 2NаОН = NaCl + NaClO (гипохлорит) + Н2О (на холоду)
3Cl2 + 6NаОН = 5NaCl + NaClO3(хлорат) + 3Н2О (при повышении температуры).
Составление уравнений овр.
Существуют два метода: метод электронного баланса и ионно-электронного баланса. В обоих случаях составляются полуреакции окисления-восстановления. В последнем случае в полуреакциях принимают участие ионы, включающие окислитель и восстановитель, а также катионы водорода или гидроксид ионы и молекулы воды. Оба метода используются при подборе коэффициентов в ОВР.
Методика расстановки коэффициентов.
Записав вещества, находим окислитель и(или) восстановитель. Определяем их степень окисления.
Записав реакции окисления-восстановления, представляем,как могут измениться степени окисления.
При написании полуреакций в ионном виде, определяем участвует ли в реакции среда (кислая, щелочная или нейтральная: Н+ Н2О или ОН- Н2О). Уравниваем полуреакции с участием среды, расставляя коэффициенты. В кислых средах воду добавляем туда, где меньше кислорода, а в нейтральной и щелочной, туда, где больше.
Уравниваем число отданных и принятых электронов, находя предварительно наименьшее общее кратное.
Суммируем полуреакции окисления-восстановления (электроны в полуреакциях должны сократиться).
Переносим коэффициенты в молекулярное уравнение.
Влияние среды на протекание ОВР.
Иногда ход ОВР зависит от среды. В некоторых случаях среда даже изменяет направление процесса. Например, реакция в кислой среде протекает слева направо, а в щелочной - справа налево.
H2SeO4 + 2HCl ↔ H2SeO3 + Cl2 + H2O (в кислой →)
Другим примером подобного рода служит усиление восстановительных свойств некоторых неметаллов, например бора и кремния щелочной среде. Их взаимодействие с водой ускоряется в растворах щелочей. Поэтому растворы гидроксидов калия и натрия используются как сильнодействующие травители для кремния и германия в полупроводниковой технике.
Si + 2KOH + H2O = K2SiO3 + 2H2
Si + 6OH- – 4e - = SiO32- + 3H2O 1
2H2O + 2e = H2 + 2OH= SiO32- 2
Si + 2OH- + H2O = 2H2 + SiO32-
Окислителем в этой реакции являются катионы водорода, входящие в состав воды.
Характерным примером влияния среды - реакция взаимодействие перманганата калия (окислитель) с сульфитом калия или натрия (восстановитель). Для создания кислой среды используют разбавленную серную кислоту, т.к. азотная кислота любой концентрации проявляет окислительные свойства (ион NO3-), а соляная – свойства восстановителя (ион Cl-). В данном случае серная кислота не изменяет степени окисления и служит только для создания среды. Вода и небольшие количества щелочей тоже изменяют характер среды, не участвуя в окислительно-восстановительном процессе.