- •1. Определение вектора. Длина вектора. Коллинеарность, компланарность векторов.
- •2. Умножение вектора на число. Свойства операции.
- •3. Сложение векторов, вычитание векторов.
- •4. Базис на плоскости. Теорема о разложении любого вектора по трём базисным векторам.
- •5. Базис в пространстве. Теорема о разложении любого вектора по трем базисным векторам.
- •6. Линейная зависимость векторов.
- •7. Декартова система координат на плоскости и в пространстве, координаты вектора.
- •8. Геометрический смысл координат вектора. Проекция вектора на координатные оси. Направляющие косинусы вектора
- •9. Деление отрезка в данном отношении.
- •6.4. Некоторые приложения скалярного произведения
- •11. Выражение скалярного произведения вектора через координаты сомножителей. Теорема.
- •12. Длина вектора, длина отрезка, угол между векторами, условие перпендикулярности векторов.
- •13. Векторное произведение векторов, его свойства. Площадь параллелограмма.
- •14. Смешанное произведение векторов, его свойства. Условие компланарности вектора. Объем параллелепипеда. Объём пирамиды.
- •15. Способы задания прямой на плоскости.
- •16. Нормальное уравнение прямой на плоскости (вывод). Геометрический смысл коэффициентов.
- •17. Уравнение прямой на плоскости в отрезках (вывод).
- •Приведение общего уравнения плоскости к уравнению плоскости в отрезках.
- •18. Уравнение прямой на плоскости с угловым коэффициентом (вывод).
- •19. Уравнение прямой на плоскости, проходящей через две точки (вывод).
- •20. Угол между прямыми на плоскости (вывод).
- •21. Расстояние от точки до прямой на плоскости (вывод).
- •22. Условия параллельности и перпендикулярности прямых на плоскости (вывод).
- •23. Уравнение плоскости. Нормальное уравнение плоскости (вывод). Геометрический смысл коэффициентов.
- •24. Уравнение плоскости в отрезках (вывод).
- •25. Уравнение плоскости, проходящей через три точки (вывод).
- •26. Угол между плоскостями (вывод).
- •27. Расстояние от точки до плоскости (вывод).
- •28. Условия параллельности и перпендикулярности плоскостей (вывод).
- •29. Уравнения прямой в r3. Уравнения прямой, проходящей через две фиксированные точки (вывод).
- •30. Канонические уравнения прямой в пространстве (вывод).
- •Составление канонических уравнений прямой в пространстве.
- •Частные случаи канонических уравнений прямой в пространстве.
- •Канонические уравнения прямой проходящей через две заданные точки пространства.
- •Переход от канонических уравнений прямой в пространстве к другим видам уравнений прямой.
- •31. Угол между прямыми (вывод).
- •32. Расстояние от точки до прямой на плоскости (вывод).
- •Расстояние от точки до прямой на плоскости – теория, примеры, решения.
- •Первый способ нахождения расстояния от заданной точки до заданной прямой на плоскости.
- •Второй способ, позволяющий найти расстояние от заданной точки до заданной прямой на плоскости.
- •Решение задач на нахождение расстояния от заданной точки до заданной прямой на плоскости.
- •Расстояние от точки до прямой в пространстве – теория, примеры, решения.
- •Первый способ нахождения расстояния от точки до прямойaв пространстве.
- •Второй способ, позволяющий находить расстояние от точки до прямойaв пространстве.
- •33. Условия параллельности и перпендикулярности прямых в пространстве.
- •34. Взаимное расположение прямых в пространстве и прямой с плоскостью.
- •35. Классическое уравнение эллипса (вывод) и его построение. Каноническое уравнение эллипса имеет вид , где– положительные действительные числа, причём.Как построить эллипс?
- •36. Классическое уравнение гиперболы (вывод) и его построение. Асимптоты.
- •37. Каноническое уравнение параболы (вывод) и построение.
- •38. Функция. Основные определения. Графики основных элементарных функций.
- •39. Числовые последовательности. Предел числовой последовательности.
- •40. Бесконечно малые и бесконечно большие величины. Теорема о связи между ними, свойства.
- •41. Теоремы о действиях над переменными величинами, имеющими конечные пределы.
- •42. Число e.
- •Содержание
- •Способы определения
- •Свойства
- •История
- •Приближения
- •43. Определение предела функции. Раскрытие неопределённостей.
- •44. Замечательные пределы, их вывод. Эквивалентные бесконечно малые величины.
- •Содержание
- •Первый замечательный предел
- •Второй замечательный предел
- •45. Односторонние пределы. Непрерывность и разрывы функции. Односторонние пределы
- •Левый и правый пределы функции
- •Точка разрыва первого рода
- •Точка разрыва второго рода
- •Точка устранимого разрыва
- •46. Определение производной. Геометрический смысл, механический смысл производной. Уравнения касательной и нормали к кривой и точке.
- •47. Теоремы о производной обратной, сложной функций.
- •48. Производные простейших элементарных функций.
- •49. Дифференцирование параметрических, неявных и степенно-показательных функций.
- •21. Дифференцирование неявных и параметрически заданных функций
- •21.1. Неявно заданная функция
- •21.2. Функция, заданная параметрически
- •50. Производные высших порядков. Формула Тейлора.
- •51. Дифференциал. Применение дифференциала к приближенным вычислениям.
- •52. Теоремы Ролля, Лагранжа, Коши. Правило Лопиталя.
- •53. Теорема о необходимом и достаточном условиях монотонности функции.
- •54. Определение максимума, минимума функции. Теоремы о необходимом и достаточном условиях существования экстремума функции.
- •Теорема (необходимое условие экстремума)
- •55. Выпуклость и вогнутость кривых. Точки перегиба. Теоремы о необходимом и достаточном условиях существования точек перегиба.
- •Доказательство
- •57. Определители n-ого порядка, их свойства.
- •58. Матрицы и действия над ними. Ранг матрицы.
- •Определение
- •Связанные определения
- •Свойства
- •Линейное преобразование и ранг матрицы
- •59. Обратная матрица. Теорема о существовании обратной матрицы.
- •60. Системы линейных уравнений. Матричное решение систем линейных уравнений. Правило Крамера. Метод Гаусса. Теорема Кронекера-Капелли.
- •Решение систем линейных алгебраических уравнений, методы решения, примеры.
- •Определения, понятия, обозначения.
- •Решение элементарных систем линейных алгебраических уравнений.
- •Решение систем линейных уравнений методом Крамера.
- •Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).
- •Решение систем линейных уравнений методом Гаусса.
- •Решение систем линейных алгебраических уравнений общего вида.
- •Теорема Кронекера – Капелли.
- •Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.
- •Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.
- •Решение систем уравнений, сводящихся к слау.
- •Примеры задач, сводящихся к решению систем линейных алгебраических уравнений.
4. Базис на плоскости. Теорема о разложении любого вектора по трём базисным векторам.
Определение.
Пусть
–
произвольный вектор,
–
произвольная система векторов. Если
выполняется равенство
,
(1)
то
говорят, что вектор
представлен
в виде линейной комбинации данной
системы векторов. Если данная система
векторов
является
базисом векторного пространства, то
равенство (1) называется разложением
вектора
по
базису
.
Коэффициенты линейной комбинации
называются
в этом случае координатами вектора
относительно
базиса
.
Теорема. (О разложении вектора по базису.)
Любой вектор векторного пространства можно разложить по его базису и притом единственным способом.
Доказательство.
1) Пусть L произвольная прямая (или ось)
и
–базис
.
Возьмем произвольный вектор
.
Так как оба вектора
и
коллинеарные
одной и той же прямой L, то
.
Воспользуемся теоремой о коллинеарности
двух векторов. Так как
,
то найдется (существует) такое число
,
что
и
тем самым мы получили разложение вектора
по
базису
векторного
пространства
.
Теперь
докажем единственность такого разложения.
Допустим противное. Пусть имеется два
разложения вектора
по
базису
векторного
пространства
:
и
,
где
.
Тогда
и
используя закон дистрибутивности,
получаем:
.
Так
как
,
то из последнего равенства следует, что
,
ч.т.д.
2)
Пусть теперь Р произвольная плоскость
и
–
базис
.
Пусть
произвольный
вектор этой плоскости. Отложим все три
вектора от какой-нибудь одной точки
этой плоскости. Построим 4 прямых.
Проведем прямую
,
на которой лежит вектор
,
прямую
,
на которой лежит вектор
.
Через конец вектора
проведем
прямую параллельную вектору
и
прямую параллельную вектору
.
Эти 4 прямые высекают параллелограмм.
См. ниже рис. 3. По правилу параллелограмма
,
и
,
,
–
базис
,
–
базис
.
Теперь,
по уже доказанному в первой части этого
доказательства, существуют такие числа
,
что
и
.
Отсюда получаем:
и
возможность разложения по базису
доказана.

рис.3.
Теперь
докажем единственность разложения по
базису. Допустим противное. Пусть имеется
два разложения вектора
по
базису
векторногопространства
:
и
.
Получаем равенство
,
откуда следует
.
Если
,
то
,
а т.к.
,
то
и
коэффициенты разложения равны:
,
.
Пусть теперь
.
Тогда
,
где
.
По теореме о коллинеарности двух векторов
отсюда следует, что
.
Получили противоречие условию теоремы.
Следовательно,
и
,
ч.т.д.
3)
Пусть
–
базис
и
пусть
произвольный
вектор. Проведем следующие построения.
Отложим
все три базисных вектора
и
вектор
от
одной точки и построим 6 плоскостей:
плоскость, в которой лежат базисные
векторы
,
плоскость
и
плоскость
;
далее через конец вектора
проведем
три плоскости параллельно только что
построенным трем плоскостям. Эти 6
плоскостей высекают параллелепипед:

рис.4.
По правилу сложения векторов получаем равенство:
.
(1)
По
построению
.
Отсюда, по теореме о коллинеарности
двух векторов, следует, что существует
число
,
такое что
.
Аналогично,
и
,
где
.
Теперь, подставляя эти равенства в (1),
получаем:
(2)
и возможность разложения по базису доказана.
Докажем
единственность такого разложения.
Допустим противное. Пусть имеется два
разложения вектора
по
базису
:
и
.
Тогда
.
(3)
Заметим,
что по условию векторы
некомпланарные,
следовательно, они попарно неколлинеарные.
Возможны
два случая:
или
.
а)
Пусть
,
тогда из равенства (3) следует:
.
(4)
Из
равенства (4) следует, что вектор
раскладывается
по базису
,
т.е. вектор
лежит
в плоскости векторов
и,
следовательно, векторы
компланарные,
что противоречит условию.
б)
Остается случай
,
т.е.
.
Тогда из равенства (3) получаем
или
.
(5)
Так
как
–
базис пространства векторов лежащих в
плоскости, а мы уже доказали единственность
разложения по базису векторов плоскости,
то из равенства (5) следует, что
и
,
ч.т.д.
Теорема доказана.
