
- •Глава III. Магнетизм
- •§12. Магнитное поле в вакууме
- •12.1. Опыт Эрстеда. Индукция магнитного поля
- •Магнитное поле
- •12.2. Поток вектора . Теорема Гаусса
- •12.3 Магнитное взаимодействие токов. Закон Ампера
- •Закон Био-Савара-Лапласа
- •12.5 Принцип суперпозиции. Применение закона
- •12.5.1 Магнитное поле кругового тока
- •12.5.2. Магнитное поле прямого тока
- •12.6. Теорема о циркуляции вектора магнитной индукции. Вихревой характер магнитного поля
- •12.7. Магнитное поле соленоида
- •12.7. 1. Магнитное поле тороида
- •§13. Магнитное поле в веществе
- •Электрона и атома
- •13.2. Намагничивание вещества. Вектор намагниченности
- •Поле в магнетиках. Напряженность магнитного поля
- •13.4. Магнитная восприимчивость и магнитная проницаемость
- •13.5. Теорема о циркуляции вектора
- •13.6. Расчет магнитного поля длинного стержневого проводника с током
- •Граничные условия для векторов и
- •13.8. Расчет магнитного поля в неоднородных средах
- •Типы магнетиков
- •13.9.1. Природа диамагнетизма
- •13.9.2. Природа парамагнетизма.
- •13.9.3. Ферромагнетизм
- •13.9.4. Природа ферромагнетизма
- •§ 14. Заряды и токи в магнитном поле
- •14.1. Сила Ампера и сила Лоренца
- •Силу (14.4) называют силой Лоренца. Ее величина
- •14.2. Закономерности движения заряженных частиц в магнитном поле
- •14.3. Ускорители заряженных частиц
- •Внутри дуанта электрическое поле отсутствует, поэтому
- •Контур с током в магнитном поле
- •В неоднородном магнитном поле помимо вращательного момента, стремящегося повернуть виток, будет действовать сила, вызывающая поступательное перемещение витка с током.
- •Если в процессе перемещения сила тока не меняется, то
- •14.5. Физические принципы работы электроизмерительных приборов
- •14.5.1. Магнитоэлектрическая система
- •Таким образом,
- •14.5.2. Электродинамическая система
- •§15. Электромагнитная индукция
- •Явление электромагнитной индукции. Закон Фарадея. Правило Ленца
- •Если потоки, пронизывающие витки, одинаковы, то
- •15.2. Генераторы и электродвигатели
- •15.2.1. Генератор переменного тока
- •15.2.2. Генератор постоянного тока и электродвигатель
- •Токи Фуко
- •15.4. Явление самоиндукции. Индуктивность
- •Потокосцепление самоиндукции такого соленоида
- •15.5. Токи при размыкании и замыкании цепи
- •15.6. Природа э.Д.С. Индукции
- •15.7. Явление взаимной индукци
- •15.8. Физические принципы работы трансформатора
- •§ 16.Энергия магнитного поля
- •16.1. Магнитная энергия контуров с током
- •16.2. Энергия магнитного поля. Плотность магнитной энергии
- •§ 17. Обобщение законов электромагнетизма. Уравнения Максвелла
- •17.1. Обобщение закона электромагнитной индукции. Первое уравнение Максвелла
- •17.2 Обобщение теоремы о циркуляции вектора напряженности магнитного поля. Ток смещения
- •17.3 Вектор плотности тока смещения
- •Таким образом, линии вектора плотности тока смещения между пластинами непрерывно переходят в линии плотности тока проводимости внутри проводящей пластины.
- •17.4. Второе уравнение Максвелла
- •17.5. Система уравнений Максвелла
17.5. Система уравнений Максвелла
Основу теории электромагнитного поля составляют уравнения Максвелла, которые во всей теории электромагнетизма играют такую же всеобъемлющую роль, как и закона Ньютона в механике.
В систему уравнений Максвелла входят следующие уравнения:
(I)
;
(II)
;
(III)
;
(IV)
;
(V)
;
(VI)
.
(VII)
Уравнения (I) и (II) характеризуют взаимосвязь переменных электрического и магнитного полей и определяют вихревой характер магнитного поля.
Уравнения (III) и (IV) отражают основные свойства статических магнитных и электрических полей: магнитное поле является вихревым, а электростатическое может быть создано неподвижными зарядами.
Уравнения (V)- (VII) связывают основные и вспомогательные характеристики электрического и магнитного полей с учетом свойств среды.
Уравнения (I) – (VII) называют уравнениями Максвелла в интегральной форме, так как они связывают усредненные характеристики поля в пределах объема, охватываемого поверхностью, через которую определяется поток, или в окрестности контура, по которому берется циркуляция.
Уменьшая размеры поверхности и контура (стягивая их в точку) можно перейти к уравнениям Максвелла в дифференциальной форме, которые связывают характеристики электромагнитного поля в каждой точке:
;
;
;
;
;
;
.
Операции
и
были введены в главеI.