
- •Содержание
- •Введение
- •1 Основные понятия и законы химии
- •1.1 Основные понятия химии
- •1.2 Основные законы химии
- •2 Основные классы неорганических соединений
- •2.1 Простые вещества
- •2.2 Сложные вещества
- •3 Растворы
- •3.1 Общие свойства растворов
- •3.1.2 Способы выражения состава растворов
- •3.1.3 Физико-химические процессы образования растворов
- •3.1.4 Экстракция
- •3.2 Растворы неэлектролитов
- •3.2.1 Законы Рауля
- •3.2.2 Осмос
- •3.3 Растворы электролитов
- •3.3.1 Электролитическая диссоциация
- •3.3.2 Сильные и слабые электролиты
- •3.4 PH водных растворов
- •4 Ионно-обменные реакции
- •4.1 Необратимые ионно-обменные реакции
- •4.2 Обратимые ионно-обменные реакции
- •5 Гидролиз солей
- •5.1 Различные случаи гидролиза
- •2) Гидролиз соли образованной сильным основанием и слабой кислотой
- •3) Гидролиз соли образованной слабым основанием и слабой кислотой
- •5.2 Константа гидролиза
- •5.3 Смещение равновесия при гидролизе
- •6. Окислительно-восстановительные реакции
- •6.1 Составление уравнений окислительно-восстановительных реакций
- •6.2 Прогнозирование окислительно-восстановительных свойств веществ по степеням окисления элементов
- •6.3 Основные типы окислительно-восстановительных реакций
- •6.4 Взаимодействие металлов с водой, кислотами и щелочами
- •7 Гальванические элементы
- •7.1 Принцип работы гальванического элемента
- •7.2 Водородный электрод сравнения. Электрохимический ряд
- •8 Электролиз
- •8.1 Электролиз расплавов
- •8.2 Электролиз водных растворов
- •8.3 Количественные расчёты в электролизе
- •8.4 Химические источники электрической энергии
- •9 Коррозия металлов
- •9.1 Виды и типы коррозии
- •9.2 Способы защиты металлов от коррозии
- •9.2.1 Изолирование металлов от внешней среды
- •9.2.2 Изменение состава коррозионной среды
- •9.2.3 Рациональное конструирование
- •9.2.4 Электрохимические способы защиты от коррозии
- •10 Термодинамика
- •10.1 Внутренняя энергия и энтальпия. Закон Гесса
- •Или через промежуточный продукт (со) в две реакции:
- •10.2 Энтропия
- •10.3 Энергия Гиббса
- •11 Химическая кинетика Химическая кинетика – учение о скоростях и механизмах протекания химических реакций.
- •11.1 Скорость реакции
- •Основные факторы, влияющие на скорость реакции:
- •Число частиц с энергией большей, чем Еа равно заштрихованной площади.
- •12.1.2 Модель атома по Бору
- •12.2 Современные представления о строении атома
- •13 Периодический закон и периодическая таблица д.И. Менделеева
- •14 Химическая связь и строение молекул
- •14.1 Химическая связь
- •14.1.1 Квантово-механическое описание модели молекулы водорода
- •14.1.2 Основные характеристики химической связи
- •Валентный угол–это угол между двумя химическими связями.Он отражает геометрию молекулы.
- •14.1.3 Типы химических связей Ковалентная связь –это связь между двумя атомами за счет образования общей электронной пары.
- •14.2 Состав и строение молекул
- •15 Типы кристаллических решеток
- •16.1 Общая характеристика s-элементов первой и второй групп
- •16.2 Свойства воды
- •16.2.1 Строение молекулы воды
- •16.2.2 Физические свойства воды
- •16.2.3 Химические свойства воды
- •16.3 Жесткость воды
- •18 Комплексные соединения
- •18.1 Состав комплексных соединений
- •18.2 Реакции с участием комплексных соединений
- •19.8.1 Элементы триады железа
- •19.8.2 Платиновые металлы
- •20 Органические соединения
- •20.1 Углеводороды
- •20.2 Кислородсодержащие соединения
- •20.3 Амины и аминокислоты
- •21 Полимеры
- •21.1 Классификации полимеров
- •21.2 Полимеризационные полимеры
- •21.3 Поликонденсационные полимеры
- •21.4 Структура и состояние полимеров
- •22 Рабочие вещества низкотемпературной техники
- •22.2 Хладагенты органического происхождения
- •Список использованных источников
14.1.2 Основные характеристики химической связи
Энергия связи – это энергия, необходимая для разрыва химической связи. Энергии разрыва и образовании связи равны по величине, но противоположны по знаку. Чем больше энергия химической связи, тем устойчивее молекула. Обычно энергию связи измеряют в кДж/моль. Например, на разрыв связи H–H затрачивается 432,1 кДж/моль энергии.
Для многоатомных соединений с однотипными связями за энергию связи
принимается среднее ее значение, рассчитанное делением суммарной энергии данных связей на число связей. Так, на разрыв четырех связей в молекуле метана CH4 – 1648 кДж/∙моль и в этом случае EC–H = 1648 : 4 = 412 кДж/моль.
Длина связи – это расстоянию между ядрами взаимодействующих атомов в соединении. Измеряется в нанометрах (10–9 м). Иногда применяется Å (ангстрем = 10–8 см).
Полярность связи – это распределение электрического заряда между атомами, образовавшими химическую связь. Для определения полярности связи надо сравнить электоотрицательности атомов, участвовавших в образовании связи. Если электроотрицательности одинаковы, то связь будет неполярная, а в случае разных электроотрицательностей – полярной. Крайний случай полярной связи, когда общая электронная пара практически полностью смещена к более электроотрицательному элементу, приводит к ионной связи. Например, связи: Н–Н – неполярная, Н∂+–Сl∂– – полярная и Nа+–Сl– – ионная.
Смещение электронной пары к более электроотрицательному атому приводит к образованию диполя. Диполь – система из двух равных, но противоположных по знаку зарядов, находящихся по разным сторонам связи. Полярность связи является величиной векторной и направлена по оси диполя от отрицательного заряда к положительному.
Полярность молекулы – это векторная сумма дипольных моментов всех связей молекулы. Она определяется не только разностями электроотрицательностей атомов, образовавших молекулу, но и геометрией молекулы.
Таким образом, следует различать полярности отдельных связей и полярность молекулы в целом. Например:
молекула CO2 неполярна, так как дипольные моменты полярных связей С=О компенсируют друг друга вследствие того, что молекула линейна;
молекула воды Н2О полярна, так как дипольные моменты полярных связей Н–О не компенсируют друг друга вследствие того, что молекула
нелинейна.
Пространственное строение молекул – форма и расположение в пространстве электронных облаков, образовавших химические связи.
Порядок связи – это число химических связей между двумя атомами.
Чем выше порядок связи, тем прочнее связаны между собой атомы. Порядок связи выше трех не встречается. Например, порядок связи в молекулах H–Н,O=О иN≡Nравен соответственно 1, 2 и 3.
Валентный угол–это угол между двумя химическими связями.Он отражает геометрию молекулы.
14.1.3 Типы химических связей Ковалентная связь –это связь между двумя атомами за счет образования общей электронной пары.
Ковалентная неполярная связь – эта связь между атомами с равной
электроотрицательностью. Например: Н2, О2, N2, Cl2 и т. д. Дипольный момент таких связей равен нулю.
Ковалентная полярная связь – эта связь между атомами с различной электроотрицательностью. Зона перекрывания электронных облаков смещается в сторону более электроотрицательного атома.
Например, Н–Cl (Нб+→Clб–).
Ковалентная связь обладает свойствами:
насыщаемости – способности атома образовывать количество химических связей, соответствующих его валентности;
направленности – перекрытие электронных облаков происходит в направлении обеспечивающем максимальную плотность перекрытия.
Ионная связь – это связь между противоположно заряженными ионами. Её можно рассматривать как крайний случай ковалентной полярной связи. Такая связь возникает при большой разнице электроотрицательностей атомов,
образующих химическую связь. Например, в молекуле NaF разница
электроотрицательностей составляет 4,0 – 0,93 = 3,07, что приводит к практически полному переходу электрона от натрия к фтору:
Взаимодействие ионов противоположного знака не зависит от направления, а кулоновские силы не обладают свойством насыщаемости. В силу этого иoннaя связь не обладает направленностью и насыщаемостью.
Металлическая связь – это связь положительно заряженных ионов металла со свободными электронами.
Большинство металлов обладает рядом свойств, имеющих общий характер и отличающихся от свойств других веществ. Такими свойствами являются сравнительно высокие температуры плавления, способность к отражению света, высокая тепло- и электропроводность. Это является следствием образования между атомами металлов особого вида связи – металлической связи.
У атомов металлов валентные электроны слабо связаны со своими ядрами и могут легко отрываться от них. В результате этого в кристаллической решетке металла появляются положительно заряженные ионы металла и «свободные» электроны, электростатическое взаимодействие которых обеспечивает химическую связь.
Водородная связь – это связь посредством атома водорода, связанного с высокоэлектроотрицательным элементом.
Атом водорода, связанный с высокоэлектроотрицательным элементом (фтором, кислородом, азотом и др.), отдает практически полностью электрон с валентной орбитали. Образовавшаяся свободная орбиталь может взаимодействовать с неподеленной парой электронов другого электроотрицательного атома, в результате возникает водородная связь. На примере молекул воды и уксусной кислоты водородная связь показана штриховыми линиями:
Эта связь значительно слабее других химических связей (энергия ее образования 10÷40 кДж/моль). Водородные связи могут возникать как между различными молекулами, так и внутри молекулы.
Исключительно важную роль водородная связь играет в таких неорганических веществах, как вода, плавиковая кислота, аммиак и т.д., а также в биологических макромолекулах.