
- •Раздел №1. Электротехника. Тема №1. Линейные электрические цепи постоянного тока
- •1.1.Элементы электрических цепей постоянного тока
- •1.2. Закон Ома для участка цепи
- •1.3. Источник эдс и источник тока
- •1.4. Методы расчета электрических цепей постоянного тока
- •1.4.1.Расчет по законам Кирхгофа
- •1.4.2. Преобразование эц с различным соединением сопротивлений
- •1.4.3. Метод контурных токов
- •1.4.4. Метод узловых потенциалов.
- •1.4.5. Метод узлового напряжения (2-х узлов)
- •1.4.6. Метод наложения токов
- •1.4.7. Метод эквивалентного генератора
- •1.5. Энергетический баланс в электрических цепях
- •Тема №2. Электрические цепи однофазного синусоидального тока
- •2.1. Получение синусоидальной эдс, основные соотношения.
- •2.2. Представление синусоидальной функции в комплексной форме.
- •2.3. Векторные диаграммы.
- •2.4. Среднее и действующее значение синусоидально изменяющейся
- •2.5. Синусоидальный ток в активном сопротивлении.
- •2.6. Электрическая цепь с индуктивностью
- •2.7. Цепь, содержащая сопротивление- r и индуктивность- l
- •2.8. Цепь, содержащая емкость -с.
- •2.9. Цепь, содержащая сопротивление- r и емкость-с.
- •2.10. Построение диаграммы при параллельном соединении потребителей
- •2.11. Резонанс напряжений
- •2.12. Резонанс токов
- •Тема №3. Магнитные цепи с постоянными магнитодвижущими силами
- •3.1. Основные характеристики магнитного поля
- •3.2. Закон полного тока
- •3.3. Основные характеристики ферромагнитных материалов
- •3.4. Расчет магнитных цепей
- •3.5. Индуктивные связи в электрической цепи
- •3.6. Последовательное соединение двух индуктивных катушек
- •3.7. Параллельное соединение индуктивно связанных катушек
- •Тема №4. Трехфазные цепи
- •4.1. Принципы формирования многофазных электрических цепей
- •4.2. Способы соединения трехфазных цепей
- •3.3. Расчет трехфазных цепей при соединении звездой
- •4.4. Несимметричная нагрузка при соединении звездой
- •4.5. Расчет трехфазных цепей соединением треугольник
- •4.6. Несимметричные нагрузки при соединении треугольником
- •Тема №5. Трансформаторы
- •5.1. Устройство трансформатора
- •5.2. Принципиальная схема трансформатора
- •5.3. Векторная диаграмма трансформатора тока
- •5.4. Условия работы трансформаторов тока
- •5.4.1. Холостой ход однофазного трансформатора.
- •5.4.2. Работа однофазного трансформатора под нагрузкой.
- •1. Приведение параметров вторичной обмотки трансформатора к первичной.
- •5.4.3. Режим короткого замыкания однофазного трансформатора
- •5.5. Совмещение режимов
- •5.6. Трехфазные трансформаторы.
- •5.6.1. Группы соединения трансформаторов.
- •Холостой ход трехфазного трансформатора
- •Тема №6. Электрические машины
- •6.1. Основные понятия и функции
- •6.2. Механические характеристики электрических двигателей и производственных механизмов
- •6.2.1 Условие устойчивого функционирования электропривода
- •6.3 Классификация электрических машин
- •Электрические машины постоянного тока
- •6.3. Основные понятия
- •6.3.1 Устройство машины постоянного тока
- •6.3.2. Электродвижущая сила якоря
- •6.3.3 Уравнение вращающего момента
- •6.3.4. Реакция якоря
- •6.3.5. Процесс коммутации
- •6.4. Генератор постоянного тока
- •6.4.1. Режим генератора постоянного тока
- •6.4.2. Характеристики генераторов постоянного тока
- •6.4.3. Генератор с независимым возбуждением Генератор с независимым возбуждением показан на рис.6.14.
- •6.4.4. Процесс самовозбуждения генератора постоянного тока
- •6.4.5. Генератор с параллельным возбуждением
- •6.4.6. Генератор со смешанным возбуждением Генератор со смешанным возбуждением представлен на рис.6.20.
- •6.5. Двигатель постоянного тока
- •6.5.1. Режим двигателя постоянного тока
- •6.5.2. Характеристики двигателей постоянного тока
- •6.5.3.Двигатель с независимым возбуждением На рис.6.25. Представлен двигатель с независимым возбуждением.
- •6.5.4. Двигатель с параллельным возбуждением Двигатель с параллельным возбуждением представлен на рис.6.27.
- •Двигатель с последовательным возбуждением Двигатель с последовательным возбуждением (Рис.6.28.).
- •6.5.6. Двигатель со смешанным возбуждением
- •Тема №7. Двигатель переменного тока
- •7.1. Асинхронный двигатель
- •7.1.1 . Принцип действия асинхронного двигателя
- •7.1.2. Вращающееся магнитное поле
- •7.1.3. Логическая диаграмма функционирования
- •7.1.4. Скольжение
- •7.1.5 . Элементы конструкции асинхронного двигателя
- •7.1.6. Электродвижущие силы ротора и статора
- •7.1.7. Основные уравнения асинхронного двигателя
- •7.1.8. Вращающий момент
- •7.1.9. Механическая характеристика
- •7.1.10. Потери мощности и кпд двигателя
- •7.1.11. Рабочие характеристики
- •7.2. Синхронный двигатель
- •7.2.1. Основные понятия
- •7.2.2 . Принцип действия
- •7.2.3. Основные уравнения двигателя
- •7.2.4. Характеристики двигателя
- •Тема №8. Переходные процессы в линейных электрических цепях.
- •13.1. Введение.
- •13.2. Законы коммутации.
- •13.3. Начальные условия.
- •13.5. Переходный процесс в электрических цепях, описываемых дифференциальными уравнениями первого порядка.
- •13.6. Переходный процесс в электрической цепи, описываемой дифференциальным уравнением 2-го порядка.
1.4.2. Преобразование эц с различным соединением сопротивлений
1. Последовательным
соединением сопротивлений
называется такое, когда конец первого
сопротивления соединяется с началом
второго, конец второго сопротивления
с началом третьего и т.д. Начало первого
сопротивления и конец последнего
подключаются к источнику питания или
к каким-либо точкам ЭЦ (рис. 1. 9.). Во всех
сопротивлениях протекает один и
Рис. 1.9.
Рис.
1. 9.
Ток в цепи, напряжения на сопротивлениях и потребляемые ими мощности определяются следующими соотношениями.
1. Эквивалентное
сопротивление электрической цепи
.
2. Ток в сопротивлениях
цепи
.
3. Напряжение и
мощность, подводимые к электрической
цепи с последовательным соединением
сопротивлений равны, соответственно,
сумме напряжений и мощностей
,
.
4. Напряжение и
мощности распределяются пропорционально
сопротивлениям
.
2. При параллельном соединении сопротивлений соединяются между собой как начало всех сопротивлений, так и их концы (рис. 1.10.).
Характерным для параллельного соединения является одно и то же напряжение на зажимах всех сопротивлений. Параллельно соединяются обычно различные приемники электрической энергии, рассчитанные на одно и то же напряжение. При параллельном соединении не требуется согласовывать номинальные данные приемников, возможно включение и отключение любых приемников независимо от остальных, а при выходе из строя любого из них остальные остаются включенными.
а) б)
Рис.
1. 10.
Параллельное соединение можно применить, если требуется уменьшить сопротивления какого-либо участка электрической цепи, как показано на рис. 1.10.б).
Токи и мощности
параллельно соединенных ветвей
рис.1.10.а) при
не
зависят друг от друга.
Общий ток равен сумме токов параллельно соединенных ветвей
,
где:
− эквивалентная проводимость, равная
−эквивалентное
сопротивление,
.
Токи и мощности в ветвях в ветвях вычисляются по формулам
;
;
;
.
Отношение токов и мощностей равно отношению проводимостей и обратно пропорционально отношению сопротивлений
.
При увеличении параллельно соединенных сопротивлений эквивалентная проводимость ЭЦ увеличивается, а эквивалентное сопротивление уменьшается, что приводит к увеличению тока. Если напряжение остается const, то увеличивается также общая мощность.
,
или
.
3. Смешанным или последовательно-параллельным называется такое соединение сопротивлений, при котором на одних участках ЭЦ сопротивления соединены параллельно, а на других последовательно.
Анализ и расчет ЭЦ со смешанным соединением сопротивлений производится методом преобразований. Электрическая цепь (рис. 1.11.а) заменяется последовательно эквивалентными цепями до образования схемы, изображенной на рис. 1.11.б).
а) б) Рис.
1.11.
В соединении
«треугольником» конец одного из
сопротивлений соединяется с началом
следующего и т.д., а узлы a,b,c
подключаются
к остальной части ЭЦ. В соединении
«звездой» все концы соединяются вместе,
а начала фаз подключаются к схеме. Если
заменить сопротивление
,
,
,
соединенные в треугольник, эквивалентными
сопротивлениями, соединенными звездой,
то получим цепи со смешанным соединением
сопротивлений.
Преобразование «звезды» в «треугольник»
а) б)
Рис.
1. 12.
После замены токи
и направления
должны остаться без изменений.
Для «треугольника»
;
Для соединения
звездой
По условию
эквивалентности эквивалентные
сопротивление обеих схем равны
,
следовательно, можно записать
;
Структуры соединением «треугольник» и «звезда» по отношению к узлам симметричны, поэтому циклично запишем
;
.
Сложим 1) и 3), вычтем 2), всё поделим на 2, получим
,
,
.
Если
в «треугольнике» равны, то и в «звезде»
равны:
.
Возможно обратное
преобразование звезды из резистивных
элементов в эквивалентный треугольник.
Для этого надо попарно перемножить 1) и
3) и сложить, затем вынести общий множитель
и полученное уравнение разделить на
3)уравнение, т.е.
.
Далее поочередно поделить то же уравнение
на
и
.
Путем циклической
подстановки индексов при преобразовании
звезды в треугольник получим
,
,
.
На рис. 1.13. поясняется упрощение схемы путем последовательной замены эквивалентными цепями при преобразовании «треугольника» в «звезду».
а
б)
в
Рис.
1.13. г)