Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
финансовая математика.doc
Скачиваний:
219
Добавлен:
31.03.2015
Размер:
648.19 Кб
Скачать
  1. Финансовые ренты

    1. Обычная годовая рента

Финансовые операции часто предполагают не разовые платежи, а некоторую их последовательность во времени. Примером могут служить погашение займа, арендная плата и т.д. Такие последовательности платежей называют потоком платежей.

Пусть финансовая операция по договору начинается в момент t0, а заканчивается в момент tn . Выплаты Rk (k = 1,2,..,n) происходят в моменты tk . Обычно полагают t0 = 0 (рис. 1).

Финансовой рентой называется последовательность периодических выплат Rk , R k > 0 , осуществляемых через равные промежутки времени.

Выплаты Rk называют членами ренты. Если все выплаты одинаковы, т.е. Rk = R , то рента называется постоянной.

Пусть d - период ренты, а n - число выплат, тогда произведение периода на число выплат nd представляет собой календарный срок ренты. Если выплата производится в конце каждого периода (рис. 1), то рента называется обычной, а если в начале периода, то приведенной (рис. 2).

Выбирая базовую единицу времени, зададим процентную ставку ренты (сложную). Найдем наращенную сумму S обычной годовой ренты, состоящей из n выплат, т.е. сумму всех членов потока платежей с начисленными на них процентами к концу срока. Для этого рассмотрим конкретную задачу. Пусть в течение n лет в банк в конце каждого года вносится по R рублей. На взносы начисляются сложные проценты по ставке i% годовых (рис. 3).

Наращенная сумма S состоит из n слагаемых. Именно

S = R + R( 1 + i ) + R( 1 + i )2 + ...+ R( 1 + i )n-1

Справа стоит сумма n членов геометрической прогрессии с первым членом R и знаменателем 1 + i. По формуле суммы геометрической прогрессии получим

(16)

Выражение обозначается символомs(n;i) и называется коэффициентом наращения обычной ренты. Формулу (16) можно переписать в виде

S = R × s(n; i)

Современной стоимостью ренты A называется сумма всех членов ренты, дисконтированных на начало срока ренты. Из условия эквивалентности для текущего и наращенного значения обычной ренты находим современное значение ренты А:

S = A( 1 + i )n или A = S( 1 + i )-n .

Таким образом,

. (17)

Выражение обозначается символомa(n;i) и называется дисконтирующим множителем обычной ренты или коэффициентом приведения ренты. Таким образом, современное значение ренты

A = R × a(n; i) .

Пример. Найдите текущее и наращенное значение ренты с выплатами по 320 тыс. руб. в конце каждого месяца в течение двух лет. Проценты начисляются ежемесячно по номинальной ставке 24 % годовых.

Решение. Эффективная ставка за месяц равна 24 %:12 = 2 % Текущее значение вычисляется по формуле (17):

A = 320 = 6052, 4619 тыс. руб.

Наращенное значение вычисляется по формуле (14):

S = = 9734,9952 тыс. руб.

Пример. Фирма приняла решение о создании инвестиционного фонда. С этой целью в течение 5 лет в конце каждого года в банк вносится 100 тыс. руб. под 20 % годовых с последующей их капитализацией, т.е. прибавлением к уже накопленной сумме. Найдите сумму инвестиционного фонда.

Решение. Здесь рассматривается обычная годовая рента с ежегодными платежами R = 100 тыс. руб. в течение n = 5 лет. Процентная ставка i = 20%. Из формулы (16) находим:

S = 100 = 744,160 тыс. руб.