- •История электроэнергетики Конспект лекций
- •Предисловие
- •Лекция 1. Назначение курса «История электроэнергетики»
- •Лекция 2. Электрическая цепь. Схема замещения
- •Лекция 3. Электрический ток. Электрическое поле
- •Лекция 4. Эдс источника электрической энергии. Напряжение
- •Постоянные и мгновенные значения тока, напряжения и эдс
- •Лекция 5. Идеализированные элементы электрической цепи
- •Лекция 6. Направление эдс, тока, напряжения. Второй закон Кирхгофа.Электрические цепи переменного тока. Характеристики переменного тока
- •Второй закон Кирхгофа
- •Электрические цепи переменного тока. Характеристики переменного тока
- •Метод векторных диаграмм
- •Лекция 7. Действующее значение переменного тока. Связь между током и напряжением в элементах электрической цепи тока
- •А в
- •Индуктивность
- •Емкость
- •Лекция 8. Закон Ома для цепи переменного тока. Активное, реактивное и полное сопротивления
- •Лекция 9. Мощность цепи переменного тока
- •Лекция 10. Трехфазные электрические цепи
- •Лекция 11. Принцип действия синхронного генератора Принцип действия синхронного генератора
- •Соединение фаз по схеме «звезда»
- •Связь линейного напряжения с фазным
- •Связь линейного и фазного тока
- •Соединение фаз синхронного генератора и нагрузки по схеме «треугольник»
- •Мощность в трехфазных цепях переменного тока
- •Лекция 12. Трансформаторы Конструктивная схема простейшего трансформатора
- •Принцип действия трансформатора
- •Коэффициент трансформации трансформатора
- •Саморегулирование магнитного потока трансформатором
- •Трехфазные силовые трансформаторы
- •Потери активной мощности трансформатора
- •Энергетическая диаграмма трансформатора
- •Кпд трансформатора
- •Зависимость коэффициента полезного действия от нагрузки
- •Лекция 13. Электрические машины
- •Основные понятия и определения
- •Лекция 14. Устройство машин переменного тока
- •Электрические машины переменного тока
- •Конструктивное исполнение электрических машин переменного тока
- •Роторы асинхронных машин
- •Лекция 15. Принцип действия асинхронного двигателя
- •Однофазный асинхронный двигатель
- •Преимущества и недостатки трехфазного асинхронного двигателя с короткозамкнутым ротором
- •Лекция 16. Электрические машины постоянного тока
- •Принцип действия генератора постоянного тока
- •1) Индуктор; 2) пазы; 3) обмотка; 4) якорь; 5) корпус (статор). Электрическая схема двигателя постоянного тока независимого возбуждения
- •Принцип действия простейшего двигателя постоянного тока
- •1) Ток якоря Iя; 2) эдс якоря Ея; 3) обмотка возбуждения;
- •Эдс обмотки якоря
- •Лекция 18. Эдс обмотки якоря
- •Электромагнитный момент, развиваемый в двигателе постоянного тока
- •Назначение пускового сопротивления в схеме двигателе постоянного тока независимого возбуждения
- •Лекция 19. Основные уравнения дпт независимого возбуждения Регулирование скорости двигателя постоянного тока
- •Якорный способ
- •Полюсное регулирование
- •Реостатное регулирование
- •Основные конструктивные узлы и схема включения трансформатора тока
- •Особенности эксплуатации трансформаторов тока
- •Измерительные трансформаторы напряжения
- •Условные и графические обозначения трансформатора напряжения
- •Лекция 21. Системы электроснабжения. Определения, терминология.
- •Принцип построения систем электроснабжения
- •Лекция 22. Основные этапы проектирования систем электроснабжения
- •Лекция 24. Основные мероприятия и принципы энергосбережения
- •Основные положения (принципы), обеспечивающие успех при энергосбережении
- •Лекция 25. Уравнение Максвелла. Вихревое электрическое поле.
- •Ток смещения
- •Особенности тока смещения
- •Лекция 26. Закон изменения напряжения на обкладках конденсатора
- •Напряженность электрического поля внутри конденсатора
- •Лекция 27. Уравнения Максвелла для электромагнитного поля
- •Лекция 28. Компенсация реактивной мощности
- •Содержание
- •«История электроэнергетики»
- •«История электроэнергетики» для студентов специальности 140211 – Электроснабжение
- •3. Рекомендации для сдачи зачета и экзамена
- •Рекомендуется для удобства работы распечатать этот материал Для подготовки к сдаче экзамена и зачета необходимо:
- •3.2 Рекомендации для сдачи зачета и экзамена
- •Теоретическая работа
- •Практическая работа
- •Задания по дисциплине
- •Практическая работа (обязательная) (3,6 балла)
- •2 Неделя рубежного контроля 23-28 ноября: Практическая работа (дополнительная) (2,4 балла)
- •Теоретическая работа (14,4-24 балла)
- •Практическая работа (обязательная) (3,6 балла)
- •3 Неделя рубежного контроля 11-16 января: Практическая работа (дополнительная) (2,4 балла)
- •Теоретическая работа (19,2-32 балла)
- •Практическая работа (обязательная) (4,8 балла)
- •Теоретическая работа (4,8-8 балла)
- •Практическая работа (обязательная) (3,6 балла)
- •2 Неделя рубежного контроля 26 апреля-01 мая: Практическая работа (дополнительная) (2,4 балла)
- •Теоретическая работа (14,4-24 балла)
- •Практическая работа (обязательная) (3,6 балла)
- •3 Неделя рубежного контроля 07-12 июня: Практическая работа (дополнительная) (2,4 балла)
- •Теоретическая работа (19,2-32 балла)
- •Практическая работа (обязательная) (4,8 балла)
- •Теоретическая работа (4,8-8 балла)
- •14-19 Июня Ликвидационная неделя
- •3.3 Контрольные вопросы и ответы на контрольные вопросы
- •3.4 Экзаменационные билеты
- •4. Содержание раздела данной дисциплины по видам учебных занятий
- •4.1 Содержание лекций
- •4.2. Самостоятельная работа студентов
- •7. Литература.
- •7.1 Основная литература для домашних занятий
- •7.2 Дополнительная литература
- •7.3 Периодическая литература для домашних занятий
Лекция 18. Эдс обмотки якоря
Число полюсов индуктора равно четырем. Вводится р – число пар полюсов. Для этого статора р = 2, а 2р = 4;
Рис. 17.1. Статор двигателя постоянного тока |
Рис. 17.2. Полюс
|
Индукция магнитного поля , (17.1)
где Ф – магнитный поток одного полюса; S – площадь поверхности одного полюса.
; (17.2)
. (17.3)
Найдем ЭДС якоря:
; (17.4)
, (17.5)
где – конструктивная постоянная электрической машины.
Электромагнитный момент, развиваемый в двигателе постоянного тока
Рис. 17.3. Якорь
Так как проводники якоря находятся в магнитном поле, и по ним течет ток, то по закону Ампера на них действует сила. Таким образом, на каждый проводник якоря будет действовать вращающий момент:
; (17.6)
; (17.7)
, (17.8)
где – магнитная индукция.
–электромагнитный момент якоря. (17.9)
Назначение пускового сопротивления в схеме двигателе постоянного тока независимого возбуждения
Схема двигателя постоянного тока независимого возбуждения (ДПТ НВ) изображена на рис. 17.4.
Рис. 17.4. Схема двигателя постоянного тока независимого возбуждения:
Wв – число витков обмотки возбуждения.
По второму закону Кирхгофа для цепи якоря можем записать:
Uс – Eя = RД·Iя + Rя·IД + Rп·Iя. (17.12)
Предположим, что , тогда
, (17.13)
В момент пуска ω = 0, т.е. Ея = 0;
–пусковой ток. (17.14)
Пусть ;;
А) ,;
В) ,– приемлемый для эксплуатации ток.
Вывод. Если не принять специальных мер (введение пускового сопротивления в момент пуска), обмотка якоря сгорит, то есть RП используется для ограничения тока в момент пуска.
При увеличении скорости якоря от ω = 0 до ω = ωном ЭДС якоря Ея увеличивается от 0 до Ея=Uс и необходимость в Rп пропадает, поэтому Rп рассчитано на кратковременный режим работы – на период пуска. При достижении ω = ωном Rп выводится из работы.
Лекция 19. Основные уравнения дпт независимого возбуждения Регулирование скорости двигателя постоянного тока
Уравнение баланса напряжений в цепи якоря (см. (17.10) имеет вид
Ея = Uс – Iя(Rд + Rп + Rя), (18.1)
При работе (Rп= 0) уравнение баланса напряжений в цепи якоря будет иметь вид
Ея = Uс– Iя(Rд+ Rя). (18.2)
Уравнение электромагнитного момента имеет вид Мя= сФIя. (18.3)
Уравнение ЭДС в обмотке якоря имеет вид Е=сФω. (18.4)
Закон Ома для магнитной цепи выражается формулой , (18.5)
где Fн= WвIв (намагничивающая сила обмотки возбуждения); Rм – магнитное сопротивление участка магнитной цепи, по которому замыкается магнитный поток Ф.
. (18.6)
Из выражения (18.4) получим
. (18.7)
Обозначим ;; (18.8–18.9)
; (18.10)
, (18.11)
где иIя – являются переменными; А и В – коэффициенты.
Следовательно, уравнение , то есть зависимостьявляется прямой линией (рис. 18.1).
Рис.18.1. График функции
В точке В скорость = 0, .
В точке А ток Iя= 0, .
Зависимость (18.11) и рис. (18.1) представляют собой электромеханическую характеристику двигателя постоянного тока независимого возбуждения, т.к. – механическая величина, аIЯ – электрическая величина.
Из уравнения (18.10) видно, что скорость ДПТ можно изменять:
1) путем изменения UС, такое регулирование скорости называется якорным регулированием.
2) путем изменения магнитного потока Ф, такое регулирование скорости называется полюсное регулирование.
3) путем изменения добавочного сопротивления RД – реостатное регулирование.
Рассмотрим подробнее эти способы.