Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все билеты.docx
Скачиваний:
61
Добавлен:
29.03.2015
Размер:
3.32 Mб
Скачать

Билет №13

  1. Автоматизация барабанных котельных установок

Структурные схемы локальных систем регулирования выходных параметров

котельной установки.

САР давления пара.

Регулирующее воздействие на температуру перегретого пара осуществляется путем изменения расхода питательной воды на впрыск пароохладителя Рис. 14.11. Двухимпульсная схема регулирования температуры перегретого пара

схема со вспомогательной внутренней регулируемой величиной – тем­пературой пара непосредственно за пароохладителем ПО. Осуществляемое в блоке формирования (БФ) формирование сигнала должно обеспечить исчезновение его воздействия на задатчик регулятора темпе­ратуры РТР в установившихся режимах. Использование информации о вспомога­тельной регулируемой величине позволяет изолировать основную регулируемую величину от возмущений, идущих со стороны пароохладителя ПО (от изменений температуры пара на входе в пароохладитель и самопроизвольного изменения расхода охлаждающей воды). Регулирующим воздействием является изменение положения клапана подачи охлаждающей воды на пароохладитель

Имеет место каскадное регулирование.

Применение двухимпульсной схемы регулирования температуры перегретого пара связано с запаздыванием и инерционностью объекта регулирования – пароохладителя. Поэтому и берутся упреждающий сигнал по скорости изменения температуры пара за пароохладителем.

САР уровня воды в барабане котла.

САР уровня воды в барабане котла. Структурная схема САР

WРЕГ.РАСХ. – регулятор расхода с релейным элементом на выходе; КДВ.ИМ – коэффициент передачи двигателя пост скорости исполнительного механизма; ИМ.ТИМ – постоянная времени ИМ как интегратора с выходом по положению заслонки ИМ; КИМ - коэффициент передачи ИМ; WКОРР. – передаточная функция корректирующего звена.

Регулятор расхода совместно с ИМ образуют регулирующий элемент, который должен быть ПИ-звеном. В этом случае реальная передаточная функция: WРЕГ.РАСХ= ( КРР + ТРРр )/( ТФр+1 )

ПФ замкнутого контура расхода, настроенного на модульный оптимум, может быть представлена как: ФРАСХ =

Тогда ПФ корректирующего звена, обеспечивающего по возмущению, должна быть:

WКОРР= КДАТ.РАСХ.(2Тфр+1). В настоящее время регулирование подачи воды рекомендуется осуществлять ЧастРегЭлПрив. Это дает большой экономический эффект из-за экономии электроэнергии.

САР разряжения. Регулятор разрежения РР должен обеспечивать устойчивое разрежение в топке в пределах 20-40 Па, способствуя полному удалению продуктов горения из топки. РР получает сигнал по разрежению от датчика разряжения и сигнал задания на величину разряжения в топке. Регулятор воздействует непосредственно на изменение положения направляющих аппаратов дымососов или на скорость двигателей дымососов при наличии регулируемого электропривода. При синтезе САР следует учитывать большие пульсации сигнала обратной связи по разряжению, отражающие реальную картину изменений разряжения в топке котла, также значительное

РЗАД РАЗР – задание разряжения в топке котла; РГАЗА - сигнал с датчика давления газа перед горелками. Сигнал РГАЗА с увеличением подачи газа увеличивается и скорость двигателя дымососа. Электропривод дымососа во всех режимах работы котла – работает в режиме регулятора разрежения.

Выбор технических средств (датчики, регуляторы, исполнительных механизмов и т.д.), используемых в данных локальных системах автоматизации

В системах регулирования давления, расхода и других величин управление регулируемыми клапанами, вентилями, задвижками, шиберами до настоящего времени осуществляется через исполнительные механизмы. Поддержание постоян­ных давления Рр.п и температуры tр.п редуцированного пара обеспечивается автоматическими регуляторами давления и температуры. Автоматика безопасности независима от автоматики регулирования, имеет свои автономные датчики и действует при выходе параметров за допустимые пределы. Исполнительные механизмы бывают с электрическим (преимущественно), гидравлическим или пневматическим приводом. В качестве электрического привода используются асинхронные двигатели, которые, получают питание от сети 380/220 В.

2. МТЗ

Принцип действия максимально токовых защит (МТЗ) основан на том, что при

возникновении КЗ ток увеличивается и начинает превышать ток нагрузочного режима.

Селективность действия при этом достигается выбором выдержек времени.

В пределах каждого элемента МТЗ устанавливается как можно ближе к источнику

питания.

Схемы МТЗ классифицируются по ряду признаков:

1) способу питания оперативных цепей (на постоянном или переменном токе);

2) способу воздействия на привод выключателя – прямого или косвенного действия;

3) характеру зависимости выдержки времени от тока – защиты с независимой и

зависимой выдержкой времени;

4) способу соединения обмоток ТА и обмоток реле;

5) назначению – защиты от КЗ и защиты от перегрузок током.

В качестве пусковых органов МТЗ используют токовые реле.

Параметрами срабатывания максимальной токовой защиты являются ток I с.з и время t с.з срабатывания защиты.

Время срабатывания (выдержка времени) защиты i-й линии в общем случае выбирается на ступень селективности Dt больше наибольшей выдержки времени t с.з (i 1)max - предыдущих защит .

Зная величину I сз , можно определить I сp – ток срабатывания реле, как ток I сз ,

пересчитанный на вторичную обмотку ТТ:

Коэффициент чувствительности (k ч) защиты характеризует отношение величины

контролируемого параметра в режиме КЗ к величине порога срабатывания защиты,

т.е. k ч определяет, во сколько раз минимальный ток КЗ больше I сз :

где k ч 1,5 для основных защит, и K ч 1,2 для резервной защиты.

МТЗ с независимой характеристикой времени срабатывания

МТЗ с независимой характеристикой времени срабатывания выполняется на базе реле РТ-

40, у которого ток уставки (I уст. ) регулируется плавно и время замыкания не зависит от

величины тока.

Ступень селективности чаще всего принимается равной 0,5 с при использовании

электромеханических устройств защиты и 0,3 с при использовании микропроцессорных

устройств.

МТЗ с зависимой характеристикой времени срабатывания

МТЗ с зависимой характеристикой времени срабатывания выполняется на базе РТ-

80(83,85), у которых ток уставки (I уст. ) регулируется ступенчато и время замыкания контактов зависит от величины протекающего по реле тока. Чем больше ток, тем быстрее срабатывает реле.

Вопрос №22. Системы технического и коммерческого учета энергоресурсов.

В структуре АСКУЭ, как пример конкретной реализации АСУ ТП в энергетике, в общем случае можно выделить четыре уровня (в малых и средних по мощности АСКУЭ может быть два или три уровня).

I уровень – первичные измерительные приборы (ПИП) с телеметрическими или цифровыми выходами, осуществляющие непрерывно или с минимальным интервалом усреднения измерение параметров энергоучета потребителей (потребление электроэнергии, мощность, давление, температуру, количество энергоносителя, количество теплоты с энергоносителем) по точкам учета (фидер, труба и т.п.).

II уровень – устройства сбора и подготовки данных (УСПД), специализированные измерительные системы или многофункциональные программируемые преобразователи со встроенным программным обеспечением энергоучета, осуществляющие в заданном цикле интервала усреднения круглосуточный сбор измерительных данных с территориально распределенных ПИП, накопление, обработку и передачу этих данных на верхние уровни.

III уровень – персональный компьютер (ПК) или сервер центра сбора и обработки данных со специализированным программным обеспечением АСКУЭ, осуществляющий сбор информации с УСПД (или группы УСПД), итоговую обработку этой информации как по точкам учета, так и по их группам – по подразделениям и объектам предприятия, документирование и отображение данных учета в виде, удобном для анализа и принятия решений (управления) оперативным персоналом службы главного энергетика и руководством предприятия.

IV уровень – сервер центра сбора и обработки данных со специализированным программным обеспечением АСКУЭ, осуществляющий: сбор информации с ПК и/или группы серверов центров сбора и обработки данных третьего уровня, дополнительное агрегирование и структурирование информации по группам объектов учета, документирование и отображение данных учета в виде, удобном для анализа и принятия решений персоналом службы главного энергетика и руководством территориально распределенных средних и крупных предприятий или энергосистем, ведение договоров на поставку энергоресурсов и формирование платежных документов для расчетов за энергоресусы.

Все уровни АСКУЭ связаны между собой каналами связи. Для связи уровней ПИП и УСПД или центров сбора данных, как правило, используется прямое соединение по стандартным интерфейсам (RS-485, ИРПС и т.п.). УСПД с центрами сбора данных 3-го уровня, центры сбора данных 3-го и 4-го уровней могут быть соединены выделенными, коммутируемыми каналами связи или по локальной сети.

По назначению АСКУЭ предприятия подразделяют на системы коммерческого и технического учета. Коммерческим, или расчетным, учетом называют учет поставки/потребления предприятием для денежного расчета за нее (соответственно приборы для коммерческого учета называют коммерческими или расчетными). Техническим, или контрольным, учетом называют учет для контроля процесса поставки/потребления энергии внутри предприятия по его подразделениям и объектам (соответственно используются приборы технического учета).

Внедрение только коммерческого учета не дает достаточной информации для осуществления мероприятий по энергосбережению на предприятии. Это обусловлено, тем что невозможно:

    1. гибко регулировать потребление электроэнергии и других энергоресурсов с учетом реальной загрузки предприятия;

    2. оперативно учитывать потребление энергии и мощности отдельными подразделениями предприятия;

    3. составить реальный план отключения электроустановок в пиковые часы нагрузки при повышенной договорной мощности.

Внедрение АСКУЭ технического учета дает реальный инструмент, позволяющий разработать мероприятия по энергосбережению:

- вести круглосуточный контроль за соблюдением заданного потребления энергии, мощности и балансов энергоресурсов;

- определить критические временные интервалы потребления энергии и мощности по отдельным структурным подразделениям и по предприятию в целом;

- провести анализ нагрузок по тарифным зонам и рабочим сменам предприятия и определить непроизводственные потери энергии;

- вести контроль за соблюдением заданного режима работы компенсирующих устройств;

- определить методы снижения заявленной мощности и потребления энергоресурсов;

- разработать оптимальный режим работы энергооборудования.