Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все билеты.docx
Скачиваний:
61
Добавлен:
29.03.2015
Размер:
3.32 Mб
Скачать

Микропроцессорные стойки чпу

Первоначально микропроцессорные СЧПУ, проведя интерполяцию программным путем, выдавали задание в двоичном коде на фазовую систему связи с электроприводом (см. рис. 10.7, 10.8).

В дальнейшем от фазовых устройств связи с электроприводом отказались, возложив такие операции, как сравнение задания и сигнала обратной связи, реализацию пропорционального регулятора положения, скоростную компенсацию задающего сигнала (частичная инвариантность по управлению), на ЭВМ.

Структура одного канала связи с приводом представлена на рис. 10.9. В обратной связи по положению с фазовращателем обычно используют как ПЧК при высоких скоростях, так и ПФК при малой скорости.

Если используется фотоимпульсный датчик положения, структура еще более упрощается. В канале обратной связи используется тогда ПЧК, а иногда и ПЧН для получения сигнала обратной связи по скорости (см. рис. 10.9).

Билет №8

  1. Принципы импульсного регулирования напряжения в электроприводе постоянного тока.

В основе работы импульсных преобразователей лежит следующий принцип. Предположим, что нагрузка подключена к источнику напряжения через ключевой элемент “к”, который периодически замыкается и размыкается.

Время замкнутого (tр) и разомкнутого (t0) состояний ключа можно автоматически изменять, воздействуя на него сигналами, поступающими из системы управления “СУ”. В результате к нагрузке будет приложено импульсное напряжение, форма которого соответствует диаграмме, представленной на рис 64б.

Очевидно, что среднее значение напряжения на нагрузке будет зависеть от соотношения времени замкнутого и разомкнутого состояний ключа К.

Согласно определению среднего значения напряжения можно записать:

(4-67)

где Ud - среднее значение напряжения на нагрузке;

 = tр + t0 - период переключения ключа или время цикла регулирования;

 = 1/ - частота переключения ключа.

Отношение (tр /) =  (4-68) называют коэффициентом заполнения периода рабочим импульсом. Изменяя , можно регулировать выходное напряжение на нагрузке.

Иногда рассматривается обратная величина q = (1/ ) = ( / tр), которая называется скважностью работы ключа.

Регулирование напряжения в рассматриваемой схеме за счет изменения коэффициента  можно рассматривать как широтно-импульсное регулирование напряжения на нагрузке.

Возможны три способа регулирования напряжения:

Широтно-импульсное регулирование (ШИР), когда время tр - переменное, а частота - постоянная;

Частотно- импульсное регулирование (ЧИР), когда время tр - постоянное, а частота - переменная;

Широтно-частотное регулирование, когда время tр и частота  - переменные.

Чаще всего используется первый способ регулирования выходного напряжения. Таким образом время рабочего импульса и время паузы связаны с  соотношениями:

tр =  (4-69) t0= (1- ) (4-70)

Схема регулирования напряжения и диаграмма, изображенные на рис 64, могут быть реализованы лишь при активном сопротивлении нагрузки.

При использовании импульсного регулирования в системах электропривода нагрузка имеет активно- индуктивный характер и часто в составе нагрузки присутствует источник ЭДС.

В таком случае должен быть предусмотрен обратный вентиль. Он обеспечивает непрерывность тока в нагрузке при разрыве цепи импульсным элементом (ключом).

  1. Компенсация реактивной мощности с помощью специальных устройств. Выбор мощности и места установки компенсирующих устройств.

Для реактивной мощности приняты такие понятия, как потребление, генерация, передача и потери. Считают, что если ток отстает по фазе от напряжения (индуктивный характер нагрузки), то реактивная мощность потребляется, а если ток опережает напряжение (ёмкостный характер нагрузки), реактивная мощность генерируется.

Мероприятия, проводимые по компенсации реактивной мощности, могут быть разделены на связанные со снижением потребления реактивной мощности приёмниками электроэнергии и требующие установки КУ в соответствующих точках системы электроснабжения.

Для компенсации реактивной мощности, потребляемой электроустановками промышленного предприятия, используют генераторы электростанций и синхронные двигатели, а также дополнительно устанавливаемые компенсирующие устройства - синхронные компенсаторы, батареи конденсаторов и специальные статические источники реактивной мощности.

На начальной стадии проектирования, либо при проверочных расчётах действующего предприятия, определяют наибольшие суммарные расчётные значения активных () и реактивных () электрических нагрузок предприятия (при естественном коэффициенте мощности) в соответствии с расчётом электрических нагрузок.

Для определения мощности компенсирующих устройств используют суммарное максимальное значение реактивной нагрузки предприятия:

, (5.18)

где - коэффициент, учитывающий несовпадение по времени наибольших значенийи.

О величинах нагрузок исообщается в энергосистему, которая определяет входную, экономически оптимальную реактивную мощность, которая может быть передана предприятию в режимах наибольшей () и наименьшей () активной нагрузки энергосистемы.

Определение места установки компенсирующих устройств в сетях до 1 кВ

В системах электроснабжения промышленных предприятий к ступени напряжения ниже 1 кВ подключается большая часть потребителей реактивной мощности (РМ). Однако полностью скомпенсировать всю величину РМ на данной ступени не всегда удаётся по технико-экономическим соображениям. Недостающая часть или нескомпенсированная реактивная нагрузка покрывается перетоком РМ из сети высокого напряжения.

Для отдельных шинопроводов предусматривают не более двух близких по мощности комплектов КУ, суммарной мощностью:

. (5.20)

Если основные реактивные нагрузки присоединены ко второй половине шинопровода, устанавливают только одно КУ. Точку его подключения определяют из условия:

, (5.21)

где - максимальные реактивные нагрузки шинопровода перед узломи после него (см. рис. 6).

Рис. 6. Схема подключения одной конденсаторной батареи к шинопроводу.

При подключении к шинопроводу двух конденсаторных батарей (см. рис. 7), точки их подключения определяют из следующих условий:

для дальней батареи конденсаторов (БК)

; (5.22)

ближней БК

. (5.23)

Рис. 7. Схема подключения двух БК к шинопроводу

  1. Автоматизация барабанных котельных установок

Регулирование уровня воды в барабане котла

Автоматическая система регулирования питания предназначена для поддержания материального соответствия между подачей питательной воды в котел и расходом пара. Показателем этого соответствия служит уровень воды в барабане котла.

Снижение уровня ниже допустимых пределов («упуск» воды) может привести к нарушению циркуляции в экранных трубах (опрокидывание циркуляции) и, как следствие, к пережогу труб. При значительном повышении уровня в барабане возможен захват частиц воды паром, вынос ее в пароперегреватель и турбину, что вызывает занос пароперегревателя и турбины солями и ведет к их разрушению. В связи с этим к точности поддержания заданного уровня предъявляются очень высокие требования.

Регулирование питания котлов малой производительности обычно осуществляется одноимпульсными регуляторами, управляемыми датчиками изменения уровня воды в барабане. В котлах средней и большой паропроизводительности с малым водяным объемом применяются двухимпульсные регуляторы питания котла по уровню воды и расходу пара (рис. 14.8), а также трехимпульсные, управляющие питанием котла по уровню воды, расходу пара и расходу питательной воды.

Рис. 14.8. Принципиальная схема АСР питания: Э – экономайзер; ПП – пароперегреватель; РП – регулятор; РПК – регулирующий питательный клапан

Таким образом, зона работы АСР питания ограничена уставкой защиты от понижения уровня в барабане котла, с одной стороны, и уставкой открытия аварийного слива – с другой. Эти пределы обуславливают безопасность работы котла, превышение их влечет за собой аварийную ситуацию.

АСР питания барабанного котла должна обеспечить удержание уровня в допустимых пределах:

1) при стационарном режиме (при отсутствии резких возмущений по нагрузке) максимально допустимые отклонения уровня обычно не должны превышать ±20 мм;

2) при скачкообразном возмущении нагрузки на 10 % (исходная нагрузка – номинальная) максимально допустимые отклонения по уровню обычно не должны превышать ±50 мм;

3) при нормальном стационарном режиме работы котла число включений регулятора не должно превышать 6 в минуту.

Типовая ACP питания содержит следующие элементы: первичные измерительные преобразователи (датчики) уровня, расхода пара; регулирующие устройства; коммутирующую и управляющую аппаратуру; исполнительные механизмы; регулирующие органы.

Применяемая в настоящее время схема регулирования уровня в барабанах котлов приведена на рис. 14.10, а.

Необходимость применения сравнительно сложной системы регулирования обусловлена наличием в современных котлах высокого давления своеобразного эффекта «вскипания» уровня.

Рис. 14.10. Трехимпульсная схема регулирования уровня в барабане парового котла

Надежность работы котельного агрегата во многом определяется качеством регулирования уровня. Повышение уровня ведет к аварийным последствиям, так как возможен заброс воды в пароперегреватель, что вызовет выход его из строя. В связи с этим к точности поддержания заданного уровня предъявляются очень высокие требования.

Сигнал по расходу питательной воды Gп.в поддерживает материальный баланс между расходом воды и пара (то есть регулятор стремится уравнять расход воды и пара), делает регулирование более стабильным и независимым от изменения давления питательной воды.

Сигнал по расходу пара Gп.п позволяет регулятору быстрее реагировать на изменение нагрузки, также получать нужную величину и знак (направление движения ИМ) регулирования.

Основным узлом регулятора питания является процессор (электронный прибор типа РС29 или микропроцессорный контроллер типа «Ремиконт»), в котором соответствующим образом суммируются сигналы по уровню в барабане, расходу перегретого пара и расходу питательной воды и сравниваются с заданием.

Регулирование температуры перегретого пара

Регулирующее воздействие на температуру перегретого пара осуществляется путем изменения расхода питательной воды на впрыск пароохладителя.

Схема системы ре­гулирования температуры перегретого пара за пароперегревателем ПП приве­дена на рис. 14.11. Это схема со вспомогательной внутренней регулируемой величиной – тем­пературой пара непосредственно за пароохладителем ПО. Осуществляемое в блоке формирования (БФ) формирование сигнала должно обеспечить исчезновение его воздействия на задатчик регулятора темпе­ратуры РТР в установившихся режимах. Использование информации о вспомога­тельной регулируемой

Рис. 14.11. Двухимпульсная схема регулирования температуры перегретого пара

величине позволяет изолировать основную регулируемую величину от возмущений, идущих со стороны пароохладителя ПО (от изменений температуры пара на входе в пароохладитель и самопроизвольного изменения расхода охлаждающей воды). Регулирующим воздействием является изменение положения клапана подачи охлаждающей воды на пароохладитель. Имеет место каскадное регулирование.

Применение двухимпульсной схемы регулирования температуры перегретого пара связано с запаздыванием и инерционностью объекта регулирования – пароохладителя. Поэтому и берутся упреждающий сигнал по скорости изменения температуры пара за пароохладителем.

При горении топлива его горючие составляющие – углерод и водород – вступают в химическое взаимодействие с кислородом. В результате при горении уг­лерода образуется углекислый газ, при горении водорода – водяные пары. В большинстве случаев кислород для горения поступает из воздуха.