Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторные по физике / Механика мол физ - 4.doc
Скачиваний:
32
Добавлен:
12.02.2015
Размер:
5.93 Mб
Скачать

1. Однократные измерения размера линейкой.

Линейка является простейшим измерительным устройством. Цена деления линейки может быть различной. Для измерения с помощью линейки необходимо нулевую отметку ш

Рис. 1.1. Линейка

калы совместить с краем измеряемого отрезка.

Результат измерения считывается по шкале линейки по другому краю измеряемого отрезка.

Погрешность измерения с помощью линейки составляет не более ½ цены ее наименьшего деления. Доли наименьшего деления считываются на глаз с точностью, не превышающей погрешность измерения, то есть 0,5 цены деления.

Пример 1.По линейке с ценой деления 1 мм произведен отсчет. Результат измерения записывается так:

Пример 2.Той же линейкой измерен размер. Результат измерения записывается следующим образом:При выполнении этого задания проводятся однократные измерения размера любого предмета линейкой, например, размер грани параллелепипеда или стороны треугольника из набора принадлежностей, оцениваются погрешности измерения и результат представляется в виде:, (см. примеры 1 и 2).

2. Однократные измерения штангенциркулем.

Штангенциркуль представляет собой металлическую линейку 1, на конце которой имеется поперечный выступ 2. Другой такой же выступ имеется на обойме 3. Они движутся по линейке. Обойма имеет окно 4, позволяющее видеть основную шкалу линейки. Внутренние поверхности выступов строго перпендикулярны линейке. Когда они прилегают друг к другу, указатель «нуль» на обойме находится против нулевого деления шкалы линейки. Измеряемый предмет зажимается между выступами.

Д

Рис. 1.2. Штангенциркуль

ля измерения внутренних размеров от­верстий наружные стороны концов выступов обычно делаются строго перпендикулярными линейке и слегка закругляются. Расстояние между ними при установке обоймы на нуль шкалы (обычно 8 или 10 мм) указывается на штангенциркуле 6. Иногда для измерения внутренних размеров делаются специальные ножи на тыльной стороне выступов, концы выступов заостряются. Такое устройство позволяет измерять отверстия малых размеров, но точность измерения при этом меньше.

Достаточно высокая точность измерения штангенциркулем достигается с помощью нониуса. Нониус – это дополнительная линейка со шкалой 5, нанесенной по краю подвижной 3.

Нулевой штрих шкалы нониуса служит одновременно указателем для считывания числа целых делений по основной шкале и началом отсчета долей миллиметра по шкале нониуса. Обычно число делений нониуса n= 10 илиn=20.При 10 делениях нониуса всей длине его шкалы соответствует 19мм основной шкалы, то есть 10 делений нониуса имеют длину, на 1 мм меньшую, чем 20 делений основной шкалы. Цену деления нониуса штангенциркуля можно найти по формуле . При 10 делениях нониусаи. При 20 делениях нониуса. Погрешность градуировки штангенциркуля приn= 10 равна 0,1 мм, а приn= 20 равна 0,05 мм.

Пример 3. Нониус штангенциркуля имеет цену деления 0,1 мм. Число целых делений шкалы до нуля нониуса – 12. Штрих основной шкалы совпадает со штрихом шкалы нониуса, которому предшествует 4 деления его шкалы. Результат отсчетаРезультат измерения записывается в виде:

При выполнении этого задания проводятся однократные измерения размера любого предмета штангенциркулем, оцениваются погрешности измерения и результат представляется в виде (см. пример 3).

3. Однократные измерения размера микрометром.

Для измерения внешних размеров предметов с большой точностью, чем штангенциркулем, служит микрометр. Он состоит из скобы 1, жестко соединенной с измерительным упором 2, цилиндра 3, барабана 4, который соединен с микрометрическим винтом и подвижным измерительным упором 5. На цилиндре 3 нанесено 2 миллиметровых шкалы: нижняя – основная, верхняя – дополнительная, смещенные относительно друг друга на 0,5 мм. Левый конусный конец барабана имеет круговую шкалу 6, состоящую из 50 делений. Шаг микрометрического винта равен 0,5 мм, поэтому один оборот барабана соответствует изменению линейного размера 0,5 мм.

Рис. 1.3. Микрометр

Измеряемый предмет помещают между винтом 5 и противоположным ему упором 2 так, как показано на рисунке 1.3. Винт вращают и доводят до соприкосновения с предметом. При измерении микрометром существенно постоянство вращательного момента, приложенного к барабану при соприкосновении упоров с измеряемым предметом. Поэтому барабан 4 следует вращать, прикладывая усилие не к нему самому, а к головке 7. Она соединяется с винтом с помощью «трещотки», которая передает усилие только до тех пор, пока она не достигнет определенной величины. Когда же эта величина достигнута, дальнейшее вращение головки происходит в «холостую» и не изменяет показания микрометра.

Результат измерения получают в следующем порядке. Сначала производят отсчет размера по основной и дополнительным шкалам с точностью до 0,5 мм, после этого осуществляется отсчет сотых долей миллиметра по шкале барабана и результаты суммируются.

Погрешность градуировки микрометров составляет 0,004 мм.

Пример 4.На основной шкале видно 5 целых миллиметровых делений. Следующая справа за меткой 5 основной шкалы отметка дополнительной шкалы не видна. Отсчет по шкале барабана – 24.

Результат отсчета . Результат измерения:.

При выполнении этого задания проводятся однократные измерения размера любого предмета микрометром, оценивается погрешность и результат представляется в виде: (см. пример 4).

4. Повторное измерение размеров

Повторные измерения предметов являются прямыми наблюдениями. Процедура их осуществляется очень просто: одним и тем же измерительным инструментом – линейкой, штангенциркулем или микрометром измеряют один и тот же размер несколько раз через определенный интервал времени, и результаты заносятся в таблицу.

Обработка результатов эксперимента.

  1. Погрешность величины l в каждом измерении отдельным измерительным инструментом находится по методике расчета погрешностей прямых измерений, задавая доверительную вероятностьи коэффициент Стьюдента.

, (1.17)

где

, (1.18)

. (1.19)

2. Погрешность смешанных измерений вычисляется аналогично:

(1.20)

Сравниваются погрешности и объясняются расхождения.

Задание 2. Измерение объема параллелепипеда.

Такие измерения являются косвенными и их можно осуществить двумя способами.

Способ 1. Однократные измерения

Одним из измерительных инструментов один раз определяется длина одной грани параллелепипеда и результат записывается в виде:

(1.21)

Обработка результатов эксперимента.

1. Погрешность однократных косвенных измерений различными инструментами рассчитывается по формуле (1.10). Так как объем , то

,,,

и, следовательно,

,

то есть:

,

. (1.22)

Результат измерения представляется в виде

2. В том случае, если длина всех граней измерена одним и тем же инструментом с одинаковой погрешностью ,то

Способ 2. Повторные измерения

Осуществляются повторные измерения любым измерительным инструментом одной грани несколько раз, и результаты заносятся в таблицу.

Обработка результатов эксперимента.

Вычисляется среднее значение объема и погрешность

его определения по формуле (1.22):

, (1.23)

где ,,вычисляют по методике расчета погрешностей прямых измерений.

Любопытно провести эти измерения, используя для получения результата различные измерительные инструменты, вычислить погрешность и сравнить значения объема и погрешности, полученные при измерении линейкой, штангенциркулем и микрометром, а также при смешанных измерениях.

Задание 3. Измерение плоских углов транспортиром.

Для простейших измерений углов применяется транспортир, который представляет собой полукруг, дуга которого разделена на через. Чтобы измерить уголу,накладывают транспортир (рис. 1.4) так, чтобы вершина угла совпала с центром полукруга, а стороны – с радиусами ОА и ОВ. Тогда число градусов, содержащихся в дуге, заключенной между сторонами угла АОВ, дает числовое значение его величины. Погрешность измерения углов по транспортиру составляет половину деления шкалы – 0,5.

Рис. 1.4. Транспортир

Пример 5. Результат отсчета по шкале транспортира. Результат измерения

Более сложные и более точные приборы для измерения углов мы не рассматриваем.

1. Однократное измерение углов.

При выполнении этого задания проводятся однократные измерения углов треугольника из набора принадлежностей, оцениваются погрешности измерения и результат представляется в виде: , причем очевидно, что.

2. Многократные измерения углов.

Погрешности величин у, b, а находятся по формуле расчета погрешностей прямых измерений:

. (1.26)

И в первом, и во втором случае можно проверить результат, используя формулу . При этом погрешность суммы углов отличается от погрешности измерения отдельного угла и вычисляется по формуле

(1.27)

Задание 4. Измерение времени секундомером.

Для измерения времени применяются секундомеры. Механические секундомеры имеют цену деления 0,1 и 0,2 с.

Основная погрешность этих секундомеров равна цене деления, а погрешность отсчета зависит от быстроты реакции на включение и остановку секундомера. Установлено, что неточности пуска и остановки дают погрешность порядка 0,3 с. Таким образом, при работе с секундомером с ценой деления 0,2 с погрешность может достигать 0,5 с.

Применяются электронные секундомеры с ценой деления 0,01 и 0,001 с. Их целесообразно использовать вместе с устройствами, обеспечивающими совпадение пуска и остановки с началом и концом процесса, длительность которого определяется.

Пример 6.По индикатору электронного секундомера с ценой деления 0,01 с зарегистрировано некоторое время. Результат измеренияМетодика измерения интервалов времени и обработки результатов при однократных и повторных измерениях та же, что и в предыдущих заданиях по измерению линейных размеров и углов.

Задание 5. Измерение температуры термометром.

Термометр представляет собой капиллярную трубку из стекла, которая заполнена жидкостью, обычно ртутью или подкрашенным спиртом. Капиллярная трубка помещена в корпус из стекла, в котором также закреплена измерительная шкала. Погрешность измерения температуры термометрами различных типов регламентируется ГОСТ 400-80 и имеет, в большинстве случаев, величину, равную цене деления.

Методика измерения температуры и обработки результатов при однократных и многократных измерениях та же, что и в предыдущих заданиях.

Лабораторная работа 2

Соседние файлы в папке Лабораторные по физике