Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700324.doc
Скачиваний:
15
Добавлен:
01.05.2022
Размер:
2.85 Mб
Скачать

3.8.2. Электрические методы обработки

В современном машиностроении применяют ряд методов электрической обработки заготовок. Основными из них являются следующие: электрохимический, электротермический, электроискровой, электрогидравлический, ультразвуковой и электронно- и светолучевой.

Электрохимический метод обработки (элек­трохимическое полирование металлов и анодно-химическая обработка) основан на явлениях, связанных с прохождением электрического тока через растворы электролитов.

Этот метод обработки позволяет очищать поверхности обрабатываемых материалов от окислов, ржавчины, жировых пленок и других загрязнений, а также сглаживать, доводить, шлифовать и полировать поверхности заготовки.

В процессе электрохимического полирования при анодном раство­рении металла [т. е. при переходе в раствор металла с поверхности электрода (анода), соединенного с положительным источником тока] на поверхности полируемой заготовки образуется вязкая пленка солей, защищающая микровпадины полируемой поверхности от действия тока, но не препятствующая растворению выступов. Интенсивность съема металла составляет 3 - 10 мкм/мин, длительность процесса зависит от заданного съема: для черных и цветных металлов 4 ÷ 10 мин, для легких сплавов 3 ÷ 5 мин. Достижимая точность обработки в пределах 7-8-го квалитетов, шероховатость 0,16-0,32 мкм.

Анодно-механическая обработка основана на растворении поверхности анода с образованием пленок, которые удаляют механическим путем - путем движения металлического катода. На этом принципе, например, построена анодно-механическая резка металла (рис. 3.43).

Рис. 3.43. Схема анодно-механической резки металла

При движении катода 1 (диска или ленты), соприкасающегося под давлением через образующуюся пленку с поверхностью разрезаемого металла (анода) 2, происходит направленное разрушение металла в результате совместного действия электрохимического и электротермического тока 3, проходящего между разрезаемым материалом и диском в среде водного раствора жидкого стекла. При разрезании интенсивность съема металла составляет 2000 ÷ 6000 мм3/мин; точность обработки по 12-му квалитету, шероховатость поверхности 80 мкм

Электроискровой метод обработки основан на разрушении металла в результате импульсного разряда между поверхностями обрабатываемой заготовки и электрода. Так как преимущественно разрушается анод (обрабатываемый металл), то по форме и размерам разрушенный участок соответствует катоду (электроду).

Это свойство успешно используют для выполнения отверстий, диаметр которых составляет доли миллиметра, а также для резки металла, прорезки узких пазов, фигурной резки, формообразования режущих кромок, гравирования и других подобных операций.

В последнее время в промышленности получил распространение электрогидравлический метод обработки, осно­ванный на возбуждении импульсного высоковольтного разряда в среде жидкости. В результате этих импульсов возникают сверхвысокие давления жидкости также в виде импульсов, при фокусировании кото­рых на заданный участок поверхности производится обработка. Мощность и длительность импульсов определяются параметрами электри­ческой схемы.

Этот метод применяют для наклепа поверхностей металлических заготовок, прошивания отверстий в неметаллических хрупких материалах и т. п.

В настоящее время для обработки твердых и хрупких материалов (например, стекла, рубина, алмаза, керамики, карбида вольфрама и др.), с большим трудом обрабатываемых обычными методами, применяют ультразвуковой метод. Использование ультразвуковых колебаний для обработки твердых и хрупких материалов основано на создании высокой скорости изнашивания обрабатываемого материала при контакте виб­рирующего инструмента и абразивов (в виде пасты, водной или масляной суспензии) с местом обработки. Инструмент изготовляют преимущественно из пластичного металла, в который абразивные частицы внедряются без его существенного износа.

Производительность ультразвуковой обработки зависит от свойств обрабатываемого материала, амплитуды и частоты колебаний инструмента, вида и зернистости абразивного материала, размеров обрабатываемой площади, конфигурации обрабатываемой поверхности и величины давления (статического) между инструментом и заготовкой.

Существующие модели ультразвуковых станков позволяют обрабатывать отверстия диаметром от 0,15 до 90 мм при максимальной глубине обработки два-пять диаметров с точностью обработки для твердых сплавов 0,01 мм.

Ультразвуковой метод может быть применен при изготовлении твердосплавных штампов, для чеканки рельефов (например, медалей); в этом случае вибрирующий инструмент должен иметь рельеф детали.

Метод обработки электронным лучом (элек­тронная бомбардировка). Практика применения электронного микро­скопа позволила установить возможность использования энергии кон­центрированного электронного луча для обработки твердых материалов методом расплавления.

Производительность обработки электронным лучом значительно выше, чем при прочих методах обработки; так, для обработки паза шириной 0,005 мм и длиной 3 мм в пластинке из стали толщиной 0,5 мм необходимо 29 ÷ 30 с. Стальные листы толщиной до 1 мм режут электронным лучом со скоростью 1200 мм/мин.

Электронным лучом в настоящее время обрабатывают отверстия диаметром до 0,001 мм в изделиях точного приборостроения, а также фрезеруют сложные профили.

Электронный луч применяют для очистки поверхностей деталей, изготовленных из таких материалов, как тантал, молибден, цирконий, ниобий, титан и вольфрам, а также для сварки некоторых сплавов.

Метод обработки световым лучом. Этот метод основан на использовании электромагнитных колебаний светового диапазона, получаемых с помощью квантово-оптических генераторов (лазеров).

Этими электромагнитными колебаниями можно управлять, их можно фокусировать в очень тонкие пучки, измеряемые единицами угловых минут (~ 30'), с высокой когерентностью, т. е. с колебаниями в излучаемом свете практически одной фазы и частоты.