Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
452.doc
Скачиваний:
53
Добавлен:
30.04.2022
Размер:
6.3 Mб
Скачать
    1. Классификация радиотехнических сигналов

Прежде чем приступить к изучению каких-либо новых явлений, процессов или объектов, в науке всегда стремятся провести их классификацию по возможно большим признакам. Для рассмотрения и анализа сигналов выделим их основные классы. Это необходимо по двум причинам. Во-первых, проверка принадлежности сигнала к конкретному классу — процедура анализа. Во-вторых, для представления и анализа сигналов разных классов зачастую приходится использовать разные средства и подходы. Основные понятия, термины и определения в области радиотехнических сигналов устанавливает национальный (ранее, государственный) стандарт «Сигналы радиотехнические. Термины и определения». Радиотехнические сигналы чрезвычайно разнообразны. Часть краткой классификации сигналов по ряду признаков приведена на рис. 1. Более подробно сведения о ряде понятий изложены далее. Радиотехнические сигналы удобно рассматривать в виде математических функций, заданных во времени и физических координатах. С этой точки зрения сигналы обычно описывается одной (одномерный сигнал; n = 1), двумя

(двумерный сигнал; n = 2) или более (многомерный сигнал n > 2) независимыми переменными. Одномерные сигналы являются функциями только времени, а многомерные, кроме того, отражают положение в n-мерном пространстве [19].

Рис.1. Классификация радиотехнических сигналов

Будем для определенности и упрощения в основном рассматривать одномерные сигналы, зависящие от времени, однако материал учебного пособия допускает обобщение и на многомерный случай, когда сигнал представляется в виде конечной или бесконечной совокупности точек, например в пространстве, положение которых зависит от времени. В телевизионных системах сигнал черно-белого изображения можно рассматривать как функцию f(x, у, f) двух пространственных координат и времени, представляющую интенсивность излучения в точке (х, у) в момент времени t на катоде. При передаче цветного телевизионного сигнала имеем три функции f(x, у, t), g(x, у, t), h(x, у, t), определенные на трехмерном множестве (можно рассматривать эти три функции также как компоненты трехмерного векторного поля). Кроме того, различные виды телевизионных сигналов могут возникать при передаче телевизионного изображения совместно со звуком.

Многомерный сигнал — упорядоченная совокупность одномерных сигналов. Многомерный сигнал создает, например, система напряжений на зажимах многополюсника (рис. 2). Многомерные сигналы описывают сложными функциями, и их обработка чаще возможна в цифровой форме. Поэтому многомерные модели сигналов особенно полезны в случаях, когда функционирование сложных систем анализируется с помощью компьютеров. Итак, многомерные, или векторные, сигналы состоят из множества одномерных сигналов

(1)

где n — целое число, размерность сигнала.

Р ис. 2. Система напряжений многополюсника

По особенностям структуры временного представления (рис. 3) все радиотехнические сигналы делятся на аналоговые (analog), дискретные (discrete-time; от лат. discretus — разделенный, прерывистый) и цифровые (digital).

Если физический процесс, порождающий одномерный сигнал, можно представить непрерывной функцией времени u(t) (рис. 3, а), то такой сигнал называют аналоговым (непрерывным), или, более обобщенно, континуальным (continuos — многоступенчатым), если последний имеет скачки, разрывы по оси амплитуд. Заметим, что традиционно термин «аналоговый» используют для описания сигналов, которые непрерывны во времени. Непрерывный сигнал можно трактовать как действительное или комплексное колебание во времени u(t), являющейся функцией непрерывной действительной временной переменной. Понятие «аналоговый» сигнал связано с тем, что его любое мгновенное значение аналогично закону изменения соответствующей физической величины во времени. Примером аналогового сигнала является некоторое напряжение, которое подано на вход осциллографа, в результате чего на экране возникает непрерывная кривая как функция времени. Поскольку современная обработка непрерывных сигналов с использованием резисторов, конденсаторов, операционных усилителей и т. п. имеет мало общего с аналоговыми компьютерами, термин «аналоговый» сегодня представляется не совсем неудачным. Более корректным было бы называть непрерывной обработкой сигналов то, что сегодня обычно называют аналоговой обработкой сигналов.

В радиоэлектронике и технике связи широко применяются импульсные системы, устройства и цепи, действие которых основано на использовании дискретных сигналов. Например, электрический сигнал, отражающий речь, является непрерывным как по уровню, так и по времени, а датчик температуры, выдающий ее значения через каждые 10 мин, служит источником сигналов, непрерывных по значению, но дискретных по времени.

Дискретный сигнал получают из аналогового путем специального преобразования. Процесс преобразования аналогового сигнала в последовательность отсчетов называется дискретизацией (sampling), а результат такого преобразования — дискретным сигналом или дискретным рядом (discrete series).

Простейшая математическая модель дискретного сигнала — последовательность точек на временной оси, взятых, как правило, через равные промежутки времени , называемые периодом дискретизации (или интервалом, шагом дискретизации; sample time), и в каждой из которых заданы значения соответствующего непрерывного сигнала (рис. 3, б). Величина, обратная периоду дискретизации, называется частотой дискретизации (sampling frequency): (другое обозначение ). Соответствующая ей угловая (круговая) частота определяется следующим образом: .

Дискретные сигналы могут быть созданы непосредственно источником информации (в частности, дискретные отсчеты сигналов датчиков в системах управления). Простейшим примером дискретных сигналов могут служить сведения о температуре, передаваемые в программах новостей радио и телевидения, в паузах же между таким передачами сведений о погоде обычно нет. Не следует думать, что дискретные сообщения обязательно преобразуют в дискретные сигналы, а непрерывные сообщения — в непрерывные сигналы. Чаще всего именно непрерывные сигналы используют для передачи дискретных сообщений (в качестве их переносчиков, т. е. несущей). Дискретные же сигналы можно использовать для передачи непрерывных сообщений.

Очевидно, что в общем случае представление непрерывного сигнала набором дискретных отсчетов приводит к определенной потере полезной информации, так как мы ничего не знаем о поведении сигнала в промежутках между отсчетами. Однако, существует класс аналоговых сигналов, для которых такой потери информации практически не происходит, и поэтому они могут быть с высокой степенью точности восстановлены по значениям своих дискретных отсчетов.

Разновидностью дискретных сигналов является цифровой сигнал (digital signal), В процессе преобразования дискретных отсчетов сигнала в цифровую форму (обычно в двоичные числа) производится его квантование по уровню (quantization) напряжения . При этом значения уровней сигнала можно пронумеровать двоичными числами с конечным, требуемым числом разрядов. Сигнал, дискретный во времени и квантованный по уровню, называют цифровым сигналом. Кстати, сигналы, квантованные по уровню, но непрерывные во времени, на практике встречаются редко. В цифровом сигнале дискретные значения сигнала вначале квантуют по уровню (рис. 3, в) и затем квантованные отсчеты дискретного сигнала заменяют числами чаще всего реализованными в двоичном коде, который представляют высоким (единица) и низким (нуль) уровнями потенциалов напряжения — короткими импульсами длительностью (рис. 3, г). Такой код называют униполярным. Поскольку отсчеты могут принимать конечное множество значений уровней напряжения (см. например второй отсчет на рис. 3, г, который в цифровом виде практически равновероятно может быть записан как числом 5 — 0101, так и числом 4 — 0100), то при представлении сигнала неизбежно происходит его округление. Возникающие при этом ошибки округления называются ошибками (или шумами) квантования (quantization error, quantization noise).

Последовательность чисел, представляющая сигнал при цифровой обработке, является дискретным рядом (discrete series). Числа, составляющие последовательность, являются значениями сигнала в отдельные (дискретные) моменты времени и называются цифровыми отсчетами сигнала (samples). Далее квантованное значение сигнала представляется в виде набора импульсов, характеризующих нули («0») и единицы («1») при представлении этого значения в двоичной системе счисления (рис. 3, г). Набор импульсов используют для амплитудной модуляции несущего колебания и получения кодово-импульсного радиосигнала.

В результате цифровой обработки не получается ничего «физического», только цифры. А цифры — это абстракция, способ описания информации, содержащейся в сообщении. Следовательно, нам необходимо иметь что-то физическое, что будет представлять цифры или «являться носителем» цифр. Итак, сущность цифровой обработки состоит в том, что физический сигнал (напряжение, ток и т. д.) преобразуется в последовательность чисел, которая затем подвергается математическим преобразованиям в вычислительном устройстве.

Трансформированный цифровой сигнал (последовательность чисел) при необходимости может быть преобразован обратно, в напряжение или ток.

Цифровая обработка сигналов предоставляет широкие возможности по передаче, приему и преобразованию информации, в том числе и те, которые не могут быть реализованы с помощью аналоговой техники. На практике при анализе и обработке сигналов чаще всего цифровые сигналы заменяют дискретными, а их отличие от цифровых интерпретируют как шум квантования. В связи с этим эффекты, связанные с квантованием по уровню и оцифровкой сигналов, в большинстве случаев не будут приниматься во внимание. Можно сказать, что и в дискретных и цифровых цепях (в частности, в цифровых фильтрах) обрабатывают дискретные сигналы, только внутри структуры цифровых цепей эти сигналы представлены числами.

Вычислительные устройства, предназначенные для обработки сигналов, могут оперировать с цифровыми сигналами. Существуют также устройства, построенные в основном на базе аналоговой схемотехники, которые работают с дискретными сигналами, представленными в виде импульсов различной амплитуды, длительности или частоты повторения.

Одним из основных признаков, по которым различаются сигналы, является предсказуемость сигнала (его значений) во времени.

Р ис. 3. Радиотехнические сигналы:

а — аналоговый; б — дискретный; в — квантованный; г — цифровой

По математическому представлению (по степени наличия априорной, от лат. a priori — из предшествующего, т. е. доопытной информации) все радиотехнические сигналы принято делить на две основные группы: детерминированные (регулярные; determined) и случайные (casual) сигналы (рис. 4).

Детерминированными называют радиотехнические сигналы, мгновенные значения которых в любой момент времени достоверно известны, т. е. предсказуемы с вероятностью, равной единице. Детерминированные сигналы описываются заранее заданными функциями времени. Кстати, мгновенное значение сигнала — это мера того, на какое значение и в каком направлении переменная отклоняется от нуля; таким образом, мгновенные значения сигнала могут быть как положительными, так и отрицательными (рис. 4, а). Простейшими примерами детерминированного сигнала являются гармоническое колебание с известной начальной фазой, высокочастотные колебания, модулированные по известному закону, последовательность или пачка импульсов, форма, амплитуда и временное положение которых заранее известны [19].

Если бы передаваемое по каналам связи сообщение было детерминированным, т. е. заранее известным с полной достоверностью, то его передача была бы бессмысленной. Такое детерминированное сообщение по сути дела не содержит никакой новой информации. Поэтому сообщения следует рассматривать как случайные события (или случайные функции, случайные величины). Иначе говоря, должно существовать некоторое множество вариантов сообщения (например, множество различных значений давления, выдаваемых датчиком), из которых реализуют с определенной вероятностью одно. В связи с этим и сигнал является случайной функцией. Детерминированный сигнал не может быть носителем информации. Его можно использовать лишь для испытаний радиотехнической системы передачи информации или тестирования отдельных ее устройств. Случайный характер сообщений, а также помех обусловил важнейшее значение теории вероятностей в построении теории передачи информации.

Рис. 4. Сигналы:

а — детерминированный; б — случайный

Детерминированные сигналы разделяют на периодические и непериодические (импульсные). Сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого со временем завершения переходного процесса в системе, для воздействия на которую он предназначен, называют импульсным сигналом.

Случайными называют сигналы, мгновенные значения которых в любой момент времени не известны и не могут быть предсказаны с вероятностью, равной единице. Фактически для случайных сигналов можно знать только вероятность того, что он примет какое-либо значение.

Может показаться, что понятие «случайный сигнал» не совсем корректно.

Но это не так. Например, напряжение на выходе приемника тепловизора, направленного на источник ИК-излучения, представляет хаотические колебания, несущие разнообразную информацию об анализируемом объекте. Строго говоря, все сигналы, встречающиеся на практике, являются случайными и большинство из них представляют хаотические функции времени (рис. 4, б). Как ни парадоксально на первый взгляд, но сигналом, несущим полезную информацию, может быть только случайный сигнал. Информация в таком сигнале заложена во множестве амплитудных, частотных (фазовых) или кодовых изменений передаваемого сигнала. Сигналы связи во времени меняют мгновенные значения, причем эти изменения могут быть предсказаны лишь с некоторой вероятностью, меньшей единицы. Таким образом, сигналы связи являются в некотором роде случайными процессами, поэтому и их описание осуществляется посредством методов, аналогичных методам описания случайных процессов.

В процессе передачи полезной информации радиотехнические сигналы могут быть подвергнуты тому или иному преобразованию. Это обычно отражают в их названии: сигналы модулированные, демодулированные (детектированные), кодированные (декодированные), усиленные, задержанные, дискретизированные, квантованные и др.

По назначению, которое сигналы имеют в процессе модуляции, их можно разделить на модулирующие (первичный сигнал, который модулирует несущее колебание) или модулируемые (несущее колебание).

По принадлежности к тому или иному виду радиотехнических систем, и в частности систем передачи информации, различают «связные», телефонные, телеграфные, радиовещательные, телевизионные, радиолокационные, радионавигационные, измерительные, управляющие, служебные (в том числе пилот-сигналы) и другие сигналы.

Приведенная краткая классификация радиотехнических сигналов не полностью охватывает все их разнообразие.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]