Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
425.doc
Скачиваний:
38
Добавлен:
30.04.2022
Размер:
4.68 Mб
Скачать

2.6. Задача об упругом смятии шаров

Представим, что абсолютно жесткий шар радиуса R1 покоится на упругом теле сферической формы, имеющей очень большой радиус R2, и в дальнейшем подвергается действию силы Р (рис. 28). При вычислении глубины вдавливания радиуса площадки контакта и наибольшего напряжения смятия под указанным шаром можно использовать формулы (2.55), введя вместо прежнего 1 новое значение 2, определяемое выражением:

Рис. 28

.

Последнее выражение вытекает из зависимости, составляемой для выбираемого первоначального зазора w1 в случае касания двух сферических тел (рис. 28), и в данном случае имеем:

.

Таким образом, при вдавливании жесткого шара в “почти бесконечную” сферу, получаем

; (2.56)

; (2.57)

. (2.58)

Полученные формулы могут употребляться лишь в случае, если радиус площадки смятия а будет весьма малым по сравнению с радиусом сферы R2, вследствие чего последнюю можно при небольших размерах вдавливаемого шара считать “полубесконечным” телом, закон деформации которого был положен в основание вывода формул (2.55).

Если теперь представить случай двух упругих “почти бесконечных” сфер, взаимно вдавливаемых силами Р (рис. 29), т. е. верхнюю сферу считать не абсолютно жесткой, а способной деформироваться, то в этом случае можно воспользоваться выводами предыдущей задачи, если ввести изменение в коэффициент, зависящий от упругих свойств материалов, т. е. вместо k1 подставить

k = k1 + k2 , (2.59)

где

,

Е1 и 1  упругие характеристики материала верхней сферы; E2 и 2 то же для нижней сферы.

Рис. 29

Возможность такого простого перехода от формул (2.56), (2.57), (2.58) вытекает из тех соображений, что в данной задаче ввиду деформаций обеих сфер исходное уравнение деформации (2.53) должно быть записано в виде:

.

Последнее выражение после введения обозначения (2.59), приводится к виду (2.53) с заменой k1 и k2.

Так как при сжатии упругих шаров радиус площадки смятия оказывается очень малым по сравнению с радиусами самих шаров, то рассмотренная сейчас задача о сжатии двух “почти бесконечных” сфер может быть практически использована и в задаче об упругом сжатии шаров (задача Герца). Итак, при сжатии шаров имеем:

; (2.60)

; (2.61)

. (2.62)

Зная закон распределения давления по поверхности контакта, можно перейти к вычислению напряжений внутри шаров, используя для этой цели (2.42) и применяя принцип наложения.

Большой практический интерес представляет нахождение внутри сжимаемых шаров точек, имеющих большие касательные напряжения. Исследование этого вопроса приводит к выводу, что точка, где касательное напряжение является наибольшим, лежит на оси z на глубине, равной примерно половине радиуса поверхности касания. Такую точку и следует рассматривать как самую опасную (в свете третьей теории прочности) для таких пластичных материалов, как сталь. Наибольшее касательное напряжение в этой точке (при = 0,3) составляет примерно 0,31q0.

Из (2.60), (2.61), (2.62) следует, что радиус площадки смятия, взаимное вдавливание и напряжения смятия не находятся в линейной зависимости от силы Р. При увеличении силы Р напряжения и деформации шаров возрастают медленнее, чем возрастает сила.

Таким образом, в контактной задаче принятие в основу исследования линейной связи между компонентами напряжений и компонентами деформации в каждой точке упругого тела (обобщенный закон Гука) повлекло за собой нелинейную зависимость между силой и перемещениями.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]