- •1. Гидропривод как фактор автоматизации станков и станочных комплексов
- •2. Рабочие жидкости гидросистем
- •2.1. Требования к рабочим жидкостям
- •2.2 Эксплуатационные характеристики жидкостей
- •2.3. Физические характеристики жидкостей
- •2.3.4. Кинематическая вязкость
- •2.3.7. Зависимость вязкости от температуры
- •2.3.8. Зависимость вязкости от давления
- •2.3.9. Вязкость смесей минеральных масел
- •2.3.10. Механическая и химическая стойкость (стабильность)
- •2.3.11. Теплостойкость жидкостей
- •2.3.12. Растворение в жидкостях газов
- •2.3.13. Механическая смесь воздуха с жидкостью
- •2.3.14. Образование пены
- •2.3.15. Влияние нерастворенного воздуха на работу
- •2.3.16. Сжимаемость жидкостей
- •2.3.19. Принципы выбора рабочих жидкостей гидросистем
- •3. Основы кинематики жидкостей
- •3.1. Силы, действующие в жидкостях
- •3.2. Одномерное движение жидкостей
- •3.3. Элементы тока жидкости
- • (Живое сечение) – поверхность в пределах потока жидкости, проведенная перпендикулярно направлению струек.
- •3.4. Методы описания движения жидкости
- •4. Законы и уравнения гидростатики
- •4.1. Основное уравнение гидростатики Жидкость находится в равновесии, т.Е. Действующие силы равны нулю.
- •4.2. Закон Паскаля. Гидравлический пресс
- •4.3. Уравнение неразрывности (сплошности) жидкости
- •4.4. Уравнение Бернулли
- •4.5. Уравнение Вентури
- •4.6. Число Рейнольдса
- •4.7. Уравнение энергии жидкости
- •4.8. Удельная энергия жидкости
- •5. Гидравлика трубопроводов
- •5.1. Расчет сечения трубопровода
- •5.2. Режимы течения жидкости
- •5.3. Расчет потерь напора при движении жидкости
- •5.3.1. Ламинарный режим течения
- •5.3.2. Турбулентный режим течения
- •5.4. Местные гидравлические потери
- •5.4.1. Потери в золотниковых распределителях
- •5.4.2. Вход в трубу
- •5.4.3. Внезапное сужение трубопровода
- •5.4.4. Внезапное расширение трубопровода
- •5.4.5. Сложение потерь
- •6. Кавитация жидкости
- •6.1. Способы борьбы с кавитацией
- •6.2. Практическое использование эффекта кавитации
- •7. Гидравлический удар в гидроузлах
- •7.1. Скорость ударной волны
- •7.2. Гидравлический удар в отводах
- •7.4. Гидравлический удар в насосах
- •7.5. Гидравлический удар в сливных магистралях
- •7.7. Компенсаторы гидравлического удара
- •7.8. Клапанные гасители гидравлического удара
- •8. Гидродинамическое давление струи жидкости на стенку
- •8.1. Тепловой баланс гидросистемы
- •8.2. Охлаждающие устройства
- •9. Фильтрация рабочей жидкости
- •9.1. Методы фильтрации
- •9.2. Тонкость фильтрации
- •9.3. Типы щелевых фильтров и фильтрующие материалы
- •9.4. Схемы фильтрации
- •9.5. Место для установки фильтра
- •9.6. Критерии для оценки качества фильтрации
- •9.6.1. Коэффициент пропускания
- •9.6.2. Коэффициент отфильтровывания
- •10. Понятие о подобии потоков жидкости
- •10.1. Критерии подобия
- •10.2. Закон подобия для теплопередачи
- •11. Гидроприводы мрс и омд
- •11.1. Следящий гидропривод мрс
- •11.2. Погрешность воспроизведения, нечувствительность
- •11.3. Структурная схема следящего гидропривода
- •11.4. Гидропривод импульсных молотов и пресс - молотов
- •12. Основные положения теории
- •12.1. Общие сведения
- •12.2. Физические свойства воздуха
- •12.3. Основные понятия термо- и газодинамики и принципы работы пневмоприводов
- •394026 Воронеж, Московский просп., 14
2.3.13. Механическая смесь воздуха с жидкостью
Воздух (газ) может находиться в жидкости в механической смеси, причем в зависимости от размеров пузырьков последнего такая смесь обладает меньшей или большей устойчивостью, и при определенных условиях, характеризуемых в основном размерами пузырьков (диаметр пузырька равен ~0,4—0,8 мк) и вязкостью жидкости, скорость вытеснения пузырьков воздуха становится столь малой, что воздух может находиться в смеси с маслом в течение многих суток.
Обычно в масле действующей гидросистемы содержится примерно от 0,5—5% воздуха в нерастворенном состоянии. В зависимости от конструкции и режима эксплуатации гидросистемы содержание воздуха может повыситься до 10—15% общего объема жидкости.
При наличии в жидкости нерастворенного воздуха ее вязкость увеличивается. На рис. 4 представлена кривая, характеризующая соотношение вязкостей жидкости μв с пузырьками воздуха и μ0 - без пузырьков. Это соотношение может быть выражено эмпирическим уравнением.
где b – содержание пузырьков воздуха в %.
Рис. 4. Зависимость вязкости жидкости от содержания
воздуха
2.3.14. Образование пены
При эксплуатации гидросистемы может образоваться пена, которая состоит из пузырьков воздуха различного размера. В верхней части пены располагаются крупные пузырьки со смежными стенками и в нижней части – мелкие пузырьки, не имеющие смежных стенок.
Пена понижает смазывающую способность масла, а также вызывает коррозию металлических деталей гидравлических агрегатов и окисление масла. Вследствие большой площади поверхности раздела между жидкостью и воздухом значительно ускоряются окисление и другие химические реакции в пене. Устойчивая пена превращается со временем в вязкие включения, откладывающиеся на поверхностях агрегатов и могущих нарушить их нормальную работу.
Пенообразование резко усиливается при наличии в масле даже ничтожного (менее 0,1% по весу) количества свободной или растворенной воды, которая способствует образованию эмульсий. Образование эмульсий в первом случае происходит в результате механического дробления капель воды при прохождении их через насос (грубодисперсные эмульсии).
Особенно отрицательное влияние оказывает вода, находящаяся в жидкости в виде эмульсий (однородной смеси очень мелких пузырьков воздуха и воды) высокой дисперсности, которая не оседает под действием сил тяжести; обнаружить ее можно лишь по помутнению: масло мутнеет при содержании в нем воды более 0,008% по весу при 20° С.
На рис. 5 показаны кривые, характеризующие изменение содержания воды в этих жидкостях во времени при соотношении объемов жидкой и газовой фаз 1:1. С повышением температуры растворимость воды увеличивается. Вода может попасть в масло в результате неудовлетворительного складского хранения или вследствие конденсации в гидробаке паров воды, попадающих в бак с воздухом при изменениях в них объема жидкости, обусловленных работой силовых цилиндров с односторонним штоком, зарядкой гидрогазовых аккумуляторов и пр. т. е. попадание воды в масло практически предупредить невозможно.
Рис. 5. Характеристики насыщения жидкостей водой