
- •1. Гидропривод как фактор автоматизации станков и станочных комплексов
- •2. Рабочие жидкости гидросистем
- •2.1. Требования к рабочим жидкостям
- •2.2 Эксплуатационные характеристики жидкостей
- •2.3. Физические характеристики жидкостей
- •2.3.4. Кинематическая вязкость
- •2.3.7. Зависимость вязкости от температуры
- •2.3.8. Зависимость вязкости от давления
- •2.3.9. Вязкость смесей минеральных масел
- •2.3.10. Механическая и химическая стойкость (стабильность)
- •2.3.11. Теплостойкость жидкостей
- •2.3.12. Растворение в жидкостях газов
- •2.3.13. Механическая смесь воздуха с жидкостью
- •2.3.14. Образование пены
- •2.3.15. Влияние нерастворенного воздуха на работу
- •2.3.16. Сжимаемость жидкостей
- •2.3.19. Принципы выбора рабочих жидкостей гидросистем
- •3. Основы кинематики жидкостей
- •3.1. Силы, действующие в жидкостях
- •3.2. Одномерное движение жидкостей
- •3.3. Элементы тока жидкости
- • (Живое сечение) – поверхность в пределах потока жидкости, проведенная перпендикулярно направлению струек.
- •3.4. Методы описания движения жидкости
- •4. Законы и уравнения гидростатики
- •4.1. Основное уравнение гидростатики Жидкость находится в равновесии, т.Е. Действующие силы равны нулю.
- •4.2. Закон Паскаля. Гидравлический пресс
- •4.3. Уравнение неразрывности (сплошности) жидкости
- •4.4. Уравнение Бернулли
- •4.5. Уравнение Вентури
- •4.6. Число Рейнольдса
- •4.7. Уравнение энергии жидкости
- •4.8. Удельная энергия жидкости
- •5. Гидравлика трубопроводов
- •5.1. Расчет сечения трубопровода
- •5.2. Режимы течения жидкости
- •5.3. Расчет потерь напора при движении жидкости
- •5.3.1. Ламинарный режим течения
- •5.3.2. Турбулентный режим течения
- •5.4. Местные гидравлические потери
- •5.4.1. Потери в золотниковых распределителях
- •5.4.2. Вход в трубу
- •5.4.3. Внезапное сужение трубопровода
- •5.4.4. Внезапное расширение трубопровода
- •5.4.5. Сложение потерь
- •6. Кавитация жидкости
- •6.1. Способы борьбы с кавитацией
- •6.2. Практическое использование эффекта кавитации
- •7. Гидравлический удар в гидроузлах
- •7.1. Скорость ударной волны
- •7.2. Гидравлический удар в отводах
- •7.4. Гидравлический удар в насосах
- •7.5. Гидравлический удар в сливных магистралях
- •7.7. Компенсаторы гидравлического удара
- •7.8. Клапанные гасители гидравлического удара
- •8. Гидродинамическое давление струи жидкости на стенку
- •8.1. Тепловой баланс гидросистемы
- •8.2. Охлаждающие устройства
- •9. Фильтрация рабочей жидкости
- •9.1. Методы фильтрации
- •9.2. Тонкость фильтрации
- •9.3. Типы щелевых фильтров и фильтрующие материалы
- •9.4. Схемы фильтрации
- •9.5. Место для установки фильтра
- •9.6. Критерии для оценки качества фильтрации
- •9.6.1. Коэффициент пропускания
- •9.6.2. Коэффициент отфильтровывания
- •10. Понятие о подобии потоков жидкости
- •10.1. Критерии подобия
- •10.2. Закон подобия для теплопередачи
- •11. Гидроприводы мрс и омд
- •11.1. Следящий гидропривод мрс
- •11.2. Погрешность воспроизведения, нечувствительность
- •11.3. Структурная схема следящего гидропривода
- •11.4. Гидропривод импульсных молотов и пресс - молотов
- •12. Основные положения теории
- •12.1. Общие сведения
- •12.2. Физические свойства воздуха
- •12.3. Основные понятия термо- и газодинамики и принципы работы пневмоприводов
- •394026 Воронеж, Московский просп., 14
2.3.4. Кинематическая вязкость
В гидравлических расчетах применяют отношение коэффициента динамической вязкости μ к плотности ρ жидкости, которое называется коэффициентом кинематической вязкости и обозначается ν:
В системе МКГСС коэффициент кинематической вязкости выражается в м2/сек и в системе СГС – в см2/сек. Величина вязкости, равная 1 см2/сек, называется стоксом (сm). В технической практике получили распространение сантистоксы (ссm), причем 1 ссm = 0,01 сm = 1 мм2/сек.
Указанные единицы кинематической вязкости связаны соотношением 1 м2/сек = 10 000 сm = 1 000 000 ссm.
В отечественных стандартах обычно дается кинематическая вязкость, выраженная в сантистоксах при 500 С.
В гидросистемах машин, предназначенных для работы в стабильных температурных условиях при давлении менее 100 кГ/см2, обычно применяют масла с вязкостью 20-40 ссm (при 500 С), а при давлении до 200 кГ/см2 вязкость жидкости достигает значений 110-150 ссm.
В гидросистемах с быстроходными насосами и в гидросистемах, предназначенных для работы в широком температурном диапазоне и при низких температурах, применяются масла с меньшими значениями вязкости.
2.3.5. Условные (относительные) единицы вязкости
Точных методов непосредственного измерения коэффициентов абсолютной или кинематической вязкости не существует. Лишь в некоторых случаях для определения коэффициентов абсолютной или кинематической вязкости пользуются тарированными приборами, позволяющими с приемлемой точностью определить вязкость прямым методом.
На практике с помощью вискозиметров определяют относительную вязкость, единицы измерения которой непосредственно не связаны с физической природой вязкости. В отечественной промышленности применяются единицы условной вязкости, измеряемые в секундах или градусах. Энглера с помощью вискозиметра, основанного на методе истечения жидкости через калиброванное отверстие определенного диаметра (2,8 мм). В этом приборе определяется время t истечения под собственным весом 200 см3 испытываемой жидкости из цилиндрического сосуда через заданное отверстие при данной температуре, которое сравнивается с временем tв истечения из того же сосуда 200 см3 воды при 200 С. В соответствии с этим вязкость жидкости в градусах Энглера выражается отношением
причем время истечения воды в этом приборе обычно равно tв = 50 ÷ 52 сек. Вискозиметр Энглера применим для жидкостей с вязкостью не меньше 1,10 Е.
Относительная вязкость часто выражается также в секундах Энглера, которые показывают время истечения определенного объема измеряемой жидкости из указанного вискозиметра в секундах. Покольку вискозиметр Энглера рассчитан на истечение воды за 50 – 52 сек, единица вязкости в секундах Энглера в 50 – 52 раза меньше единицы вязкости в градусах Энглера.
2.3.6. Перевод условных единиц вязкости в абсолютные
До настоящего времени не существует метода точного перевода условных (относительных) единиц вязкости в абсолютные, пересчет проводится по приближенным эмпирическим формулам и таблицам. Для применяемых в гидросистемах масел при среднем значении γ = 900 кГ/м3 коэффициенты кинематической и условной вязкости, выраженной в градусах Энглера, выражаются соотношением
Пересчет градусов Энглера в единицы абсолютной вязкости может быть осуществлен для распространенных в гидросистемах жидкостей по упрощенной формуле μ = 0,000650 Е. Для пересчета коэффициента динамической вязкости μ в единицы условной вязкости можно также пользоваться графиком, показанным на рис.1.
Рис. 1. График для пересчета динамической вязкости
в условную
Следует отметить, что существующие вискозиметры обеспечивают получение более или менее достоверных результатов для жидкостей с вязкостью от 2 до 30 ссm.