Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2598

.pdf
Скачиваний:
48
Добавлен:
07.01.2021
Размер:
28.48 Mб
Скачать

Измерительный преобразователь - СИ для выработки сигнала измерительной информации в форме, удобной для передачи сигнала, обработки, хранения, но не воспринимаемой наблюдателем.

Измерительная установка - совокупность функционально объединенных СИ (мер, ИП, ИПр) и вспомогательных устройств, предназначенных для выработки сигнала измерительной информации в форме, удобной для непосредственного восприятия наблюдателем, и расположенных в одном месте.

Измерительная система - совокупность СИ и вспомогательных устройств, соединенных каналами связи, предназначенная для выработки сигнала в форме, удобной для автоматической обработки, передачи и использования в автоматических системах управления.

Основным признаком классификации ИП является измеряемая физическая величина, по которому приборы классифицируются на ИП для измерения: температуры; давления; уровня жидкости и сыпучих материалов; количества и расхода жидкостей, газов, сыпучих материалов; плотности и вязкости вещества, анализа состава жидкостей и газов; влажности; геометрических размеров и других технологических параметров.

По другим признакам приборы классифицируются следующим образом: по применению - технические (производственные), лабораторные, контрольные, образцовые и эталонные; по виду показаний - показывающие, записывающие, интегрирующие, печатающие и регистрирующие; по способу применения - стационарные и переносные; по способу формирова-

ния сигналов - аналоговые, в которых сигнал измерительной информации является непрерывной функцией измеряемой величины и цифровые, в которых вырабатываются дискретные сигналы измерительной информации в цифровой форме; по точности измерения ИП различаются классом точности (например, классы точности 0,5; 1,0; 1,5 и т.д.); по защищенности ИП бывают обычного исполнения, пылеводонепроницаемые и тропического исполнения.

Основные метрологические характеристики ИП

Качество ИП характеризуется рядом показателей, важнейшими из которых являются: погрешность, стабильность, чувствительность, цена деления шкалы, предел измерения и динамическая погрешность.

Погрешность характеризует отклонение измеряемой величины от ее истинного (действительного) значения. Истинное значение измеряемой величины установить практически невозможно, поэтому на практике пользуются понятием «действительное значение измеряемой величины, измеренное образцовым прибором».

1110

Нормирующими значениями являются: ХN - верхний предел ХB измеряемой величины или диапазон измерения (ХB -ХН), где ХН - нижний предел измерения.

Класс точности прибора устанавливается в зависимости от значений пределов допустимых основной и дополнительной погрешностей. Чаще класс точности выражается через основную допустимую погрешность в виде относительной погрешности

КЛТ =

 

100.

(6.1)

ХN

Основная погрешность дается для нормальных условий: температура окружающей среды 293 К (+20°С); атмосферное давление 101,325 Па (760 мм рт.ст.); влажность воздуха до 80%.

Погрешность измерений, которая является результатом несовершенства средств и методов измерений (включая субъективные особенности наблюдателя), в зависимости от характера проявления подразделяют на систематическую Θ и случайную Ψ:

Δ=Θ+ Ψ.

(6.2)

Систематическая погрешность измерений - составляющая по-

грешности измерений, которая остается постоянной или закономерно изменяется при повторных измерениях одной и той же величины.

Случайная погрешность измерений представляет собой составляющую погрешности измерений, изменяющуюся случайным образом при повторных измерениях одной и той же величины в зависимости от множества случайных факторов, действия которых по-разному складываются при повторении измерений одного и того же объекта (экземпляра готовой продукции или параметра технологического процесса). Примерами случайной погрешности могут быть: погрешность вследствие вариаций показаний измерительного прибора, погрешность округления при отсчитывании показаний измерительного прибора и т.п.

Статической оценкой случайной погрешности является среднеквадратичное отклонение.

Чувствительность ИП - свойство, заключающееся в способности реагировать на изменение измеряемой величины. Количественно ее можно выразить как отношение числа делений шкалы п к диапазону измеряемой величины XN:

n

S = . (6.3)

XN

1111

Цена деления характеризуется разностью значений величин, соответствующих двум соседним отметкам шкалы. Количественно она представляется величиной, обратной чувствительности.

Минимальное значение измеряемой величины, на которую реагирует ИП, называется порогом чувствительности.

6.3.2. Типовые измерительные схемы и приборы технологического контроля

6.3.2.1. Общие сведения о датчиках физических величин

Ведущая тенденция современного развития всех областей техники, заключающаяся в автоматизации процессов управления, контроля, диагностирования, информатизации и т.д., вызвала резкий рост потребности в различного рода датчиках, являющихся первичными источниками информации об объектах, технологических процессах или внешней среде.

По классификации изделий ГСП датчики делятся на группы по входным физико-химическим воздействиям и физическим информационным сигналам на выходе.

Новейшие достижения в области микроэлектроники, материаловедения, высокотемпературной сверхпроводимости, интегральной и волоконной оптики и других отраслях современной науки и техники приводят к появлению как принципиально новых, так и к радикальному совершенствованию традиционных типов датчиков.

Наиболее распространенные датчики или первичные измерительные преобразователи (ПИП) работают по следующей схеме преобразования: неэлектрическая величина→перемещение→электрическая величина.

Резисторные датчики. Один из наиболее широко применяемых принципов преобразования физических величин основан на измерении сопротивления чувствительных элементов, которые могут быть реализованы в виде потенциометров, тензо- и терморезисторов.

Потенциометрические датчики. В них измеряемая физическая ве-

личина обычно с помощью механической передачи преобразуется в перемещение движка потенциометра, что приводит к соответствующему изменению сопротивления. Чаще всего для изготовления проволоки используются различные сплавы платины, обладающие повышенной коррозионной и износостойкостью, применяются также манганин, константан.

Пример схем проволочных потенциометрических датчиков представлен на рис.6.3. Датчик представляет собой каркас, на котором намотан в один слой провод с большим удельным сопротивлением, и подвижный контакт с линейным (рис.6.3, а) или угловым (рис.6.3, б) перемещением движка, скользящего по виткам провода. Этот преобразователь представ-

1112

ляет собой делитель напряжения. Выходной ток IН и напряжение UН зависят от положения движка потенциометра. Эта зависимость в общем нелинейна, что определяется прежде всего отношением полного сопротивления R потенциометра к сопротивлению нагрузки RН. Величина относительного изменения сопротивления потенциометра k=r/R, при равномерной его намотке совпадает с относительным перемещением l/L движка потенциометра (где L - общая длина сопротивления R), которое равно нулю при r=R. Однако при относительно большом сопротивлении нагрузки RН >>R статическая характеристика принимает линейный вид.

а

б

Рис. 6.3. Потенциометрические датчики (преобразователи)

Если RН в 10-20 раз больше R, то нелинейность статической характеристики не превышает 1-2 % предела измерений.

UН

U

r

.

(6.4)

 

 

 

R

 

Тензорезисторные датчики основаны на явлении тензоэффекта, заключающегося в изменении сопротивления проводников и полупроводников при их механической деформации. Современные тензорезисторы изготавливаются на основе технологии печатания схем (фольговые тензорезисторы) или методами осаждения тонких пленок, позволяющими значи-

1113

тельно улучшить их характеристики. Для датчиков, работающих в диапазоне температур до 180 °С, в качестве тензочувствительного материала используется константан. Для более высоких температур (200-1000 °С) применяются специальные сплавы.

Как правило, для всех тензорезисторов необходимы надежные способы их закрепления на поверхности испытываемых (деформируемых) объектов, а также требуется нанесение герметизирующих покрытий, предотвращающих нежелательные загрязнения. Особого искусства и техники требует также выполнение электрических соединений.

Впоследние годы изготавливают датчики с полупроводниковыми тензорезисторами, выращенными непосредственно на упругом элементе, выполненном из кремния и сапфира. Упругие элементы из кристаллических материалов обладают упругими свойствами, близкими к идеальным, и существенно меньшим гистерезисом и нелинейностью по сравнению с металлическими.

На одном упругом элементе выращивается обычно не один тензорезистор, а структура в виде полумоста или даже целый мост; кроме того, термокомпенсирующие элементы. В частности, КНС-структура (кремний на сапфире) положена в основу большой серии унифицированных датчиков давления, образующих приборный комплекс «Сапфир-22». Дальнейшим развитием унифицированных датчиков абсолютного давления и перепада давлений является создание комплекса датчиков «Сапфир-300», которые базируются на чувствительном элементе с МДМ-структурой (металл-ди- электрик-металл).

Терморезисторы, в отличие от потенциометрических и тензорезисторных датчиков, применяются только для измерения температуры. Подробнее рассмотрим в разделе «Измерение температуры».

Емкостные датчики. Эти датчики имеют разнообразные области применения, однако наибольшее распространение они получили для измерения малых перемещений и физических величин, легко преобразуемых в перемещение, например, давлений.

Впростейшем случае они состоят из двух металлических пластин (электродов), разделенных малым воздушным зазором. Любое изменение зазора либо перекрывающихся площадей (при движении одной пластины вдоль другой) будет вызывать изменение емкости, которое затем можно измерить. Достоинствами емкостных датчиков в отличие от резисторных и индуктивных являются отсутствие шумов и самонагрева, стабильность метрологических характеристик во времени, потенциально высокая термоустойчивость. Емкостные датчики конструктивно исключительно просты,

вних легко может быть внедрена микроэлектронная технология. Перемещение подвижного электрода и соответствующее изменение

емкости может быть измерено с помощью самоуравновешивающегося

1114

моста либо автогенератора, в котором изменение емкости изменяет частоту генерации, что особенно привлекательно для цифровых систем.

Изменения емкости конденсатора можно достичь изменением входной величины: расстояния d между двумя (и более) электродами (рис. 6.4, а); площади S электродов, образующих собственно емкость (рис. 6.4, б); диэлектрической проницаемости cреды между электродами (рис. 6.4, в).

Емкость С плоскопараллельного конденсатора равна С = S /d . Емкость цилиндрического конденсатора вычисляется так: С = 2 l / ln (D2 / D1), где l - длина цилиндра; D1 и D2 - внутренний диаметр внешнего и наружный диаметр внутреннего цилиндров соответственно.

Диэлькометрические преобразователи, построенные на изменении расстояния между электродами, используют для измерения малых перемещений (до 1 мм). Для измерения больших перемещений применяют преобразователи с изменяющейся площадью электродов (рис. 6.4, б).

а

б

в

Рис. 6.4. Диэлькометрические (емкостные) измерительные преобразователи

Преобразователи с изменяющейся диэлектрической проницаемостью межэлектродного пространства (рис. 6.4, в) часто используют в схемах автоматического контроля и регулирования таких параметров технологического процесса, как уровень, толщина продукта, влажность, концентрация жидкостей, давление.

Достоинства диэлькометрических преобразователей: высокая чувствительность, простота конструкций, малые габариты и инерционность.

Электромагнитные датчики

Электромагнитные датчики получили широкое применение в различных областях науки и техники благодаря достаточно высокой точности, широким функциональным возможностям, надежности, особенно при работе в тяжелых эксплуатационных условиях.

Датчики, преобразующие входную величину - перемещение в изменение индуктивности, называются индуктивными, а в изменение взаимоин-

дуктивности - трансформаторными или (реже) взаимоиндуктивными.

1115

Индуктивный датчик (рис. 6.5)

 

основан

на

изменении

индуктивности

 

обмотки 1 электромагнитного дросселя в

 

зависимости

от воздушного зазора В

 

между сердечником 2 и якорем 3. Здесь

 

входным воздействием является пере-

 

мещения якоря 3, а выходной величиной

 

- индуктивность L или выходное

 

сопротивление X= L (где - частота

 

переменного тока).

 

Рис. 6.5. Схема индуктивного

Достоинствами

индуктивных

датчика

датчиков

являются простота и надеж-

 

ность. Недостатки: сравнительно малая чувствительность, зависимость индуктивного сопротивления от частоты тока, сравнительно небольшой диапазон линейного участка статической характеристики.

Дифференциально-трансформаторный преобразователь (ДТП)

получил особо широкое применение. Электрическая схема ДТП с подвижным сердечником, переметающимся относительно обмоток, представлена на рис. 6.5.

Первичная обмотка 1 состоит из двух секций, намотанных согласно, а вторичная обмотка состоит из секций 3 и 4 , включенных встречно. Подвижный сердечник 2 соединен с чувствительным элементом, на который воздействует измеряемая физическая величина (перемещение, давление и т.п.). Магнитный поток от первичной обмотки индуктирует в секциях вторичной обмотки ЭДС е1 и е2, значение которых зависит от величины тока в

Рис. 6.6. Дифференциально- обмотке 1, его частоты и взаимных трансформаторный индуктивностей М1 и М2 между секциями 3 и 4

преобразователь и первичной обмотки. При среднем (нейтральном) положении сердечника взаимные индуктивности М1 и М2 равны. При отклонении сердечника вверх или вниз

от нейтрального положения значение одной из взаимных индуктивностей увеличивается, а другой - уменьшается.

ЭДС на выходе ДТП определяется по формуле

E = - jωIM,

(6.5)

1116

где 2 f (f - частота питания); I - ток питания первичной обмотки преобразователя; M=M1-M2 - взаимная индуктивность между выходной и первичной обмотками, зависящая от положения сердечника в катушке преобразователя.

6.3.2.2. Измерительные схемы для датчиков

Малые напряжения постоянного тока, являющиеся выходной величиной генераторных ПИП (например, термоэлектрических термометров), можно измерять либо методом непосредственного измерения с помощью милливольтметра, либо путем использования компенсационной (потенциометрической) или дифференциальной схем.

Компенсационная схема, являющаяся одной из основных в средствах автоматического контроля различных параметров технологических процессов, основана на компенсации (уравновешивании) измеряемой величины известным падением напряжения на калиброванном сопротивлении.

Дифференциальная измерительная схема служит для измерения разности между измеряемой величиной и некоторой другой, заранее известной величиной.

Мостовая измерительная схема - наиболее распространенная при автоматическом контроле технологических параметров. Параметрические ПИП включают в мостовые схемы, в которых текущее значение параметра ПИП сравнивается с заданным его значением (в уравновешенных мостах) или в измерительной диагонали моста образуется напряжение, функционально связанное с измерением контролируемого параметра технологического процесса (неуравновешенные мосты).

При уравновешенной мостовой схеме применяется нулевой метод измерения тока в диагонали: изменение параметра ПИП (сопротивление, индуктивность, емкость) компенсируется изменением сопротивления другого плеча до момента полного исчезновения тока в измерительной диагонали.

6.3.2.3. Методы измерения важнейших параметров технологических процессов

6.3.2.3.1. Измерение температуры

Температура - один из распространенных параметров, который приходится контролировать в различных средах:

-газовой (помещение цеха или склада, сушильная, запарная и термофиксационная камеры и т.д.);

1117

-паровой (запарная, сушильная камеры и т.п.);

-жидкостной (вода, водные растворы красителей, органические растворители, растворы, применяемые при обработке сырья, и т.д.);

-твердой (поверхность плиты пресса, поверхность сушильных барабанов и каландров, поверхность деталей аппаратов для вулканизации и т.д.).

В современной практике используются две температурные шкалы:

1. Международная практическая температурная шкала МПТШ с температурным интервалом 0-100 °C. Температура по ней обозначается t=...°С.

2. Абсолютная термодинамическая шкала, основанная на втором законе термодинамики и предложенная Кельвином. В этой шкале за нуль принята точка, лежащая ниже точки таяния льда на 273,16 °C. Температура по этой шкале обозначается Т=...К.

Соотношение значений температуры по этим шкалам описывается так:Т=t+ 273, 16.

Вмеждународной системе единиц СИ в 1961 г. основной единицей принят кельвин. В России используют обе шкалы.

Взависимости от принципа действия приборы для измерения температуры делятся на следующие группы:

1. Термометры расширения, основанные на изменении объема термометрической жидкости или линейных размеров твердых тел при изменении температуры; применяются для диапазона температур

-200...+750 °С.

2. Манометрические термометры, основанные на изменении давления газа, жидкости или пара в замкнутой среде при изменении температуры; применяются для диапазона измеряемых температур от

-200 до 1000°С.

3.Термоэлектрические термометры (термопары), основанные на термоэффекте; используются для измерения температур в диапазоне от

-200 до +2500°С.

4.Электрические термометры сопротивления, основанные на изменении сопротивления проводников и полупроводников от температуры; используются для измерения температуры в диапазоне от -260 до

+1100 °С.

5.Пирометры излучения, основанные на изменении интенсивности теплового излучения нагретых тел от их температуры; используются для измерения температур в диапазоне от + 100 до +8000 °С.

Термометры расширения. К ним относятся жидкостные стеклянные, биметаллические и дилатометрические термометры.

Жидкостные стеклянные термометры применяются для измере-

ния температуры жидких и газообразных сред в диапазоне от -35 до

1118

+100 ... 150 °С (иногда до 500 °С). В качестве термометрической жидкости используют ртуть, спирт, толуол и т.п. Они могут быть выполнены в виде термосигнализаторов, имеющих подвижный рабочий контакт, сигнализирующий достижение какой-либо определенной предельной температуры. Постоянная времени их примерно 2с, точность - десятые доли °С. Недостатки - малая прочность и нерегулируемость.

Биметаллические и дилатометрические термометры. Принцип действия их основан на использовании свойства твердого тела изменять свои линейные размеры при изменении температуры. Для ограниченного интервала температур зависимость длины lt твердого тела от температуры t может быть выражена линейным уравнением вида lt l0(1 αt ), где l0 - длина тела при температуре 0 °С; - средний коэффициент линейного расширения тела в интервале температур от 0 до t °С.

Относительно широкое применение в промышленности биметаллических и дилатометрических термометров обусловлено хорошей надежностью, простотой конструкции и низкой стоимостью.

Манометрические термометры основаны на зависимости давления рабочей среды (газа, жидкости, парожидкостной смеси) от температуры. Термочувствительная система состоит из баллона, соединительного капилляра, манометрической пружины, заполненной рабочей средой. В зависимости от температуры изменяется давление в термобаллоне и в системе происходит деформация пружины, свободный конец которой перемещается и поворачивает показывающую стрелку, которая также может иметь воздействие на контактное устройство для сигнализации предельных значений температуры.

Манометр применяется для измерения температуры до 400 °С. Длина дистанционного капилляра достигает 10-25 м и более. Недостатки этих термометров: значительная инерционность (несколько секунд), относительно низкая точность (класс точности 1,6; 2,5), сложность ремонта при разгерметизации.

Термометры сопротивления. Термометры сопротивления основаны на зависимости сопротивления проводников (металлов) и полупроводников от температуры R = f(t). При этом сопротивление металлических термометров (медных, платиновых) увеличивается с ростом контролируемой температуры в объекте и выражается зависимостью:

Rt = R0(1+ αt ),

(6.6)

где R0 - сопротивление термометра при t = 0 °С; α - температурный коэффициент электрического сопротивления, 1/град.

Серийно выпускаются платиновые термометры типа ТСП с несколькими стандартными градуировками 1П, 5П, 10П, 50П, 100П, 500П для тем-

567

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]