Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2598

.pdf
Скачиваний:
61
Добавлен:
07.01.2021
Размер:
28.48 Mб
Скачать

Уровни планирования и оперативного управления техпроцессом

Операторская

 

Операторская

 

АРМ начальника цеха

 

станция 1

 

станция 2

 

 

(сервер АСУ ТП)

Общезаводская

 

 

 

 

 

 

 

 

 

 

 

 

сеть

 

 

 

 

 

 

Ethernet TCP/IP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Коммутатор

 

 

Уровни автоматического

 

 

 

 

 

 

 

 

 

 

 

управления техпроцессом

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВУ НЦУ

 

ВУ НЦУ

 

 

 

ВУ НЦУ

 

ВУ НЦУ

линии 1

 

линии 2

 

 

 

линии 3

 

линии 4

 

TSI-1

 

 

 

TSI-2

 

 

 

 

TSI-3

 

 

TSI-4

Рис. 3.77. Структурная схема комплекса вычислительных средств АСУ ТП: ВУ НЦУ – вычислительные устройства непосредственного цифрового управления

Для наиболее оперативных вмешательств в кадре предусмотрены кнопки с действием «в одно нажатие». Для других вмешательств и ведения диалога с системой управления в кадре имеется около 50 вызываемых окон. Всего в четырёх кадрах визуализации – более 150 диалоговых окон. Однако, несмотря на высокую функциональную насыщенность ЧМИ, всем цехом легко управляет один оператор (рис. 3.78).

Рис. 3.78. Рабочее место оператора системы

910

Аппаратные средства непосредственного управления технологическим процессом

Конфигурация аппаратно-программных средств в описываемом проекте во многом продиктована наличием четырёх независимо работающих технологических линий. Так, если средства верхних уровней управления являются общими для четырёх линий (поскольку в системе общая база данных, технологическим процессом управляет один оператор и т.д.), то аппаратные средства, а заодно и управляющие программы нижних уровней разделены между линиями. Основной резон в таком разделении – возможность независимого останова линий для выполнения регламентного обслуживания технологического оборудования.

На рис. 3.79 приведена фактически типовая схема построения аппаратных средств НЦУ для неделимого технологического участка, в данном случае – для одной линии. Как видно, вычислительное устройство НЦУ является отдельным узлом сети. Оно конструктивно обособлено и содержит блок питания, монтажный каркас, процессорную плату, сетевую плату Ethernet для обмена данными с верхними уровнями управления и преобразователь интерфейсов RS-232/TSI для обмена данными с модулями удалённого ввода-вывода сигналов.

Рис. 3.79. Схема построения аппаратных средств НЦУ для одной технологической линии

911

Один из вариантов конструктивного исполнения УСО показан на рис. 3.80. Основой для объединения устройств нижних уровней управления в сеть является Transparent serial interface (TSI) – интерфейс, разработанный в группе компаний «Элтикон».

TSI – это полевой интерфейс, реализующий функции канала последовательной передачи данных. Назначение TSI – объединение удалённых устройств в многоточечную сеть для осуществления обмена данными в полудуплексном режиме через их последовательные порты RS– 232 или иные порты, имеющие раздельные линии RxD (принимаемые асинхронные данные) и TxD (передаваемые асинхронные данные). Технические требования к TSI распространяются на каналообразующую аппаратуру и линию связи, но не оговаривают протокол обмена и методы доступа к линии связи.

Рис. 3.80. Шкаф с УСО в смесительном отделении линии № 3

Представленный проект отличается большим объёмом подготовительных, монтажных и пусконаладочных работ на объекте, особенно если учесть, что заказчик «взял на себя повышенные обязательства», изготовив новые грузоприёмные устройства дозаторов цемента и инертных компонентов. Тем не менее все работы на объекте выполнены всего лишь за шесть месяцев и без остановки производства. Точнее говоря, каждая из технологических линий останавливалась на три дня (пятницу, субботу, воскресенье).

912

3.6.1. Микроволновой метод управления вязкостью (подвижностью) бетонной смеси

Измерение влажности при помощи высокочастотной емкостной измерительной электроники

Измерительная электроника обеспечивает большую разрешающую способность и в связи с этим имеет высокую точность измерения влажных материалов всех видов, например при производстве бетона.

Существенная выгода при этом обусловлена линейностью выходных сигналов высокочастотных измерительных сенсоров от влажности песка, не требующей высокозатратного программного обеспечения и дорогостоящего оборудования.

Смесительная зона располагается под дозаторным помещением. Из дозаторов отмеренные дозы цемента, воды, мелкого и крупного заполнителей, а также при необходимости и добавки, передаются в бетоносмесители.

При перемешивании компонентов бетонной смеси преследуется цель получения однородной по свойствам и составу массы, которая после затвердевания гарантировала бы одинаковые свойства бетона в конструкции. Это достигается многократным перемещением частиц по сложным, постоянно пересекающимся траекториям в растворомешалках и бетоносмесителях.

По методам приготовления смеси смесители, как и дозаторы, классифицируют на циклические апериодического действия. Исходя из способов перемешивания и конструктивных особенностей их подразделяют на барабанные (гравитационные), тарельчатые и лотковые. Наиболее широко применяются циклические смесители – гравитационного и принудительного действия.

Гравитационное перемешивание используют при приготовлении пластичных бетонных смесей с крупным заполнителем из плотных горных пород. Материалы перемешиваются во вращающихся барабанах, имеющих на внутренних стенках корытообразные лопасти, расположенные по винтовой линии. При вращении бетоносмесителя лопасти захватывают и поднимают вверх часть перемешиваемых материалов. Достигая определенного наклона, лопасти непрерывно сбрасывают их вниз и тем самым вызывают взаимное перемешивание частиц в результате различной крупности.

Отечественная промышленность выпускает гравитационные смесители СБ с опрокидными барабанами грушевидной и двухконусной формы и объемом готового замеса 65–2000 л. Загрузка материала в грушевидный смеситель и разгрузка смеси из него осуществляется через одно загрузочно-разгрузочное отверстие, в двухконусном – через два с

913

противоположных торцов. Небольшие по массе барабаны опрокидываются с помощью ручного механизма, большие – гидравлическими или пневматическими устройствами.

Производительность смесителей периодического действия, м3/ч, определяется по формуле

Q=60.V/T ,

(3.49)

где Q – производительность смесителя периодического действия, м3/ч; V – объем готового замеса, м3; T – цикл приготовления бетонной смеси, мин.

Цикл приготовления определяется временем на загрузку, перемешивание, разгрузку и возвращение смесителя в исходное положение.

Благодаря очень высокой скорости вычисления в 100 MELOPS (Million Floating Point Operations per Second) он позволяет получать сигналы измерения через систему управления почти в режиме реального времени и в любой момент времени. Этот модуль обеспечивает очень хорошую фильтрацию сигналов, к нему возможно подключать 2 микроволновых зонда измерения влажности и 2 температурных датчика. Параметризация выполняется программным обеспечением, совместимым с Windows. Микроволновые зонды могут использоваться и в лабораториях для контроля качества. При этом следует отметить, что микроволновое измерение в настоящее время является высочайшим достижением техники в области измерения влажности. Этот метод утвердился на рынке. Известные производители машин и линий по всему миру используют эти системы.

При этом необходимо постоянно помнить, что в бетонной промышленности обрабатываются природные материалы, обладающие специфическими качествами и требующие особых условий обработки. Значит, техника не может стоять на месте. Будут разрабатываться новые специальные зонды, которые будут давать данные не только по влажности, но и по свойствам к структуре материала.

Краткая характеристика микроволновой технологии. Микроволны

– это электромагнитные волны в диапазоне от 300 МГц до 30 ГГц. Измерительные датчики работают, как правило, в диапазоне 433,92 МГц или 2,45 ГГц. В основе микроволнового метода измерения влажности лежит принцип высокой диэлектрической постоянной воды, обуславливающей ее высокую селективность по этому параметру от других материалов. Диэлектрическая постоянная воды определяется величиной R=80, что существенно больше диэлектрической постоянной других материалов, для которых значения R составляет лишь R=3–8. т.е. эти величина отличается в 10 27 раз. Это и обуславливает высокую

914

чувствительности определения влажности в компонентах заполнителей смеси и бетонной смеси в смесителе в целом.

3.7.Автоматизация процессов формования и уплотнения

3.7.1.Классификация установок и процессов формования

иуплотнения

При изготовлении железобетонных изделий бетонная смесь уплотняется и изделиям придается определенная геометрическая форма. Такие процессы выполняются с помощью формовочного оборудования. При этом основными способами уплотнения бетонной смеси являются вибрирование, центрифугирование и прессование. Последний способ получил распространение при изготовлении короткомерных труб малых и средних диаметров.

Для уплотнения бетонной смеси и формования изделий вибрированием используют вибраторы, виброплощадки, а также формовочные машины и установки с вибрационными механизмами. Режим виброуплотнения характеризуется амплитудой и частотой колебаний, продолжительностью вибрирования. На уплотнение бетонной смеси влияет направление колебаний и способ их передачи от источника вибрирования.

Уплотнение бетонной смеси центрифугированием применяют при изготовлении длинномерных, симметричных относительно продольной оси изделий, например труб. Основным формовочным оборудованием являются центрифуги, работающие по отстойному способу. В этом случае бетонная смесь уплотняется при вращении формы на заданных скоростях. Затем скорость центрифуги снижается, она останавливается, и отжатая вода (шлам) сливается из формы.

Установки для прессования бетона устроены так, что через вертикально стоящую или медленно вращающуюся форму, которая сверху заполняется бетонной смесью, проходит вращающийся шток с прессующими насадками. Различают вертикальное и горизонтальное прессования. Станки, работающие по принципу вертикального прессования, могут обеспечивать послойное прессование бетона в теле трубы или одновременное формование всего тела трубы. Станки для послойного прессования бетонной смеси делятся на радиальные и осевые.

В станках радиального прессования бетонная смесь прижимается усилиями, направленными перпендикулярно к внутренним стенкам формы. В станках осевого прессования каждый последний слой бетона прижимается к предыдущему усилиями, направленными по вертикали. Транспортируется бетонная смесь от места ее разгрузки к формовочному посту и укладывается в форму бетонораздатчиками или

915

бетоноукладчиками. Бетонораздатчики выдают бетонную смесь из бункера в форму без разравнивания, а бетоноукладчики не только выдают бетонную смесь, но и разравнивают ее.

3.7.2. Автоматическое управление установкой для центрифугирования труб

Основным технологическим оборудованием формовочного поста при центрифугированном способе уплотнения бетонной смеси является центрифуга (роликовая, осевая или ременная) и ложковый питатель (рис. 3.81 ). С помощью ложки питателя 2 порция бетонной смеси загружается в медленно вращающуюся форму 4. Затем скорость центрифуги увеличивается. При этом процесс уплотнения бетонной смеси состоит из двух этапов: предварительного и окончательного. При автоматическом управлении установкой для центрифугирования труб выполняются рабочие операции, указанные в табл. 3.11.

Таблица 3.11

Характеристика рабочих операций при центрифугированном формовании труб

Рабочая операция

Начало операции

Конец операции

п/п

 

 

 

1

Перемещение питателя вперед

(0 1)p

(0 1)s1

2

Загрузка бетонной смеси в форму

(0 1)s1

В функции времени

3

Разгон формы до загрузочной

 

 

скорости

 

 

4

Перемещение питателя назад

При окончании

В функции

5

Предварительное уплотнение

операций 2 и 3

времени(0 1)s1

 

бетонной смеси

 

 

6

Переходный режим

При окончании

В функции времени

 

 

операции 5

 

7

Окончательное уплотнение

При окончании

В функции времени

 

бетонной смеси

операции 6

 

Автоматизированная установка для центрифугирования труб работает следующим образом. После установки формы с арматурой 4 на центрифуге и заполнения бетонной смесью ложки питателя 2 подается пусковой импульс р. При этом включается двигатель МП, и тележка 1 питателя перемещается вперед. Когда ложка питателя достигает опоры 3, т. е. займет рабочее положение, появляется сигнал s1 путевого выключателя ВП1, на который воздействует тележка 1. В этом случае двигатель МП отключается, одновременно включаются механизм загрузки МЗ и двигатель центрифуги МЦ, работающий в режиме минимальной скорости. В течение определенного интервала времени происходит загрузка во вращающуюся форму порции бетонной смеси и ее распределение.

916

После окончания загрузки двигатель МП включается в направлении назад и тележка питателя перемещается в исходное положение до срабатывания путевого выключателя ВП2, по сигналу s2 которого двигатель МП отключается. Одновременно с перемещением тележки питателя двигатель МЦ переключается в режим средней скорости. При этом в течение определенного интервала времени происходит предварительное уплотнение бетонной смеси.

После предварительного уплотнения двигатель МЦ переключается в режим переходной, а затем в режим максимальной скорости, при которой бетонная смесь окончательно уплотняется. По истечении интервала времени, необходимого для окончательного уплотнения, цикл формования заканчивается.

При автоматическом управлении двигателем привода центрифуги регулирование скорости осуществляется по системе «генератор – двигатель» или с использованием тиристорного преобразователя. На основании анализа зависимости интервалов включения исполнительных механизмов от сигналов пускового элемента и путевых выключателей, а также регламентированной во времени последовательности включений можно записать алгоритмы формирования командных сигналов автоматического управления установкой для центрифугирования труб

(табл. 3.12).

Рис. 3.81. Структурная схема автоматического управления установкой для

центрифугирования труб

917

Таблица 3.12

Алгоритмы формирования командных сигналов при центрифугированном формовании труб

 

Циклограмма

Исполнительны

Обозначение ИМ

 

 

 

 

 

 

Алгоритм

 

включения

й механизм

 

формирования КС

 

исполнительных

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

механизмов

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Двигатель

МП(вперед)

Int (0 1)p (0 1)s1

 

 

 

 

 

 

 

 

 

 

 

перемещения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

питателя

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Механизм

МЗ

V23

s1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D(0 1)s1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

загрузки

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

МЦ(минимальная

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Двигатель

скорость)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

привода

МЦ(средняя

V5

 

V23

D(0 1)V23

 

 

 

 

 

 

 

 

 

 

 

цинтрифуги

скорость)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

МЦ(переходная

V6

 

V5

 

D(0 1)V5

 

 

 

 

 

 

 

 

 

 

 

 

скорость)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

МЦ(максимальна

V

 

 

D(0 1)V

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

я скорость)

7

 

6

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Двигатель

МЦ(назад)

V5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

перемещения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

питателя

 

 

 

 

 

 

 

 

 

 

 

 

 

Примечание. Цифры на циклограмме соответствуют рабочим операциям, указанным в табл. 3.11.

3.7.3.Автоматическое управление установкой для радиального прессования труб

Вустановку для радиального прессования труб (рис. 3.82) входят поворотный стол 3 с электромагнитными фиксаторами 1 и 2, на который ставится форма 4, бункер 5 со шнековым питателем, роликовая головка 8 и траверса 6, которая перемещается с помощью гидроцилиндра 9 по направляющим 7 в вертикальной плоскости.

Из исходного положения А форма 4 перемещается вместе с поворотным столом 3 в рабочее положение В, и роликовая головка 8 опускается до нижнего торца формы. Бетонная смесь из бункера 5 подается в форму шнековым питателем и уплотняется роликовой головкой при движении ее до верхнего торца формы.

При автоматическом управлении установкой для радиального прессования труб выполняются рабочие операции, указанные в табл. 3.13.

918

Рис. 3.82. Структурная схема автоматического управления станком для радиального прессования труб

Таблица 3.13

Характеристика рабочих операций при радиальном прессовании труб

Рабочая операция

Начало операции

Конец операции

п/п

 

 

 

1

Освобождение фиксатора 2

(0 1)p

В функции

 

поворотного стола

 

времени

2

Поворот стола вперед

(0 1)p

(0 1)s4

3

Опускание траверсы с роликовой

(0 1)s4

(0 1)s2

 

головкой

 

 

4

Загрузка бетонной смеси в форму

(0 1)s2

(0 1)s1

5

Прессование бетонной смеси

6

Подъем траверсы с роликовой

 

 

 

головкой

 

 

7

Освобождение фиксатора 1

(0 1)s1

В функции

 

поворотного стола

 

времени

8

Поворот стола назад

(0 1)s1

(0 1)s3

Автоматизированная установка для радиального прессования труб работает следующим образом. После установки формы 4 на поворотном

919

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]