- •1. Кровь, её функции. Основные физико-химические константы крови в норме и при патологии.
- •2. Белки плазмы крови, классификация, методы разделения.
- •3.Основные небелковые компоненты крови. Остаточный азот, его состав.
- •4.Принципы организации и механизмы регуляции кос.
- •5. Виды, причины и механизм развития алкалоза и ацидоза.
- •6. Эритроциты. Общая характеристика, строение, особенности метаболизма.
- •8. Биосинтез гема. Реакции, ферменты, локализация, регуляция и биологическая роль. Порфирии
- •9. Распад Hb в клетках рэс.
- •10. Метаболизм Fe
- •11. Особенности метаболизма лейкоцитов.
- •12. Особ метаболизма тромбоцитов, роль в гемостазе.
- •13. Механизм и стадии образования мочи.
- •Петля Генле обеспечивает реабсорбцию воды и солей
- •Реабсорбция кальция происходит в дистальном отделе
- •Конечный отдел нефрона определяет объем мочи
- •14. Органические и неорганические компоненты мочи норме/пат.
- •Калий Нормальные величины
- •Нормальные величины
- •Клинико диагностическое значение
- •Хлориды
- •Нормальные величины
- •Клинико диагностическое значение
- •Бикарбонаты
- •Нормальные величины
- •Клинико диагностическое значение
- •Фосфаты
- •Нормальные величины
- •Клинико диагностическое значение
- •Органические компоненты мочи Мочевина
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Креатинин
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Креатин
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Мочевая кислота
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Гиппуровая кислота
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Органические кислоты
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Пигменты
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Глюкоза
- •Нормальные величины
- •Клинико‑диагностическое значение
- •15. Нарушение процессов фильтрации, реабсорбции, секреции.
- •Лабораторная оценка реабсорбции Проксимальный каналец
- •Дистальный каналец
- •16. Гомеостатическая функция почек.
- •17. Особенность обмена белков и аминокислот в почках:
- •19. Функции печени. Особенности метаболизма гепатоцитов
- •20. Роль печени в углеводном обмене
- •21. Роль печени в липидном обмене
- •22.Роль печени в азотистом обмене.
- •24. Роль печени в регуляции кос, гормон гомеостаза и уровня бав.
- •I фаза метаболизма ксенобиотиков
- •Восстановление нитросоединений
- •II фаза метаболизма ксенобиотиков
- •25. Струк-функц и метабол характеристика мышечных волокон
- •26. Характеристика белков мышечной ткани
- •27. Роль мышечной ткани в межорганном обмене субстратами
- •28. Особенности метаболизма миокарда
- •30. Общая характеристика метаболизма нервной системы.
- •31. Нейромедиаторы, их характеристика и метаболизм
- •33. Биохим механизмы действ на мозг алк, нарк и токс соед.
- •34. Характеристика волокнистых структур ст.
- •35.Схема биосинтеза гликозамингликанов, их функциональная роль.
- •36.Костная и хрящевая ткань, хим сост и особ метаболизма.
- •37. Изменение ст при старении, коллагенозах, заживлении ран.
- •38.Механизмы канцерогенеза.
- •39. Биохимия легочной ткани. Причины и биохимические механизмы развития эмфиземы легких.
13. Механизм и стадии образования мочи.
ФИЛЬТРАЦИЯ
Почечное, или мальпигиевое, тельце представляет собой двустенную капсулу (капсула Шумлянского—Боумена) внутри которой находится клубочек капилляров. Внутренняя поверхность капсулы выстлана эпителиальными клетками; образующаяся полость между висцеральным и париетальным листками капсулы переходит в просвет проксимального извитого канальца. Можно выделить три слоя, отделяющие плазму крови от просвета капсулы:
1. Эндотелий – является барьером для клеток крови, имеет поры 50-100 нм.
2. Базальная мембрана – имеет поры диаметром 5-6 нм, которые пропускают белки массой не более 70 кДа.
3. Подоциты – формируют структуры "переплетенных пальцев", формируя трехмерный фильтр с порами 20-50 нм. Пространство пор заполняет гликокаликс подоцитов, состоящий из гликопротеинов с сиаловой кислотой в качестве гликана, несущего высокий отрицательный заряд. Наличие сиалопротеинов обеспечивает прохождение молекул диаметром от 1,5 до 10 нм и предотвращает прохождение более крупных молекул.
Благодаря такому строению почечного фильтра в первичную мочу преимущественно попадают только мелкие незаряженные или положительно заряженные молекулы. В целом, ультрафильтрат по составу подобен плазме крови, за исключением белков.
Ультрафильтрация является пассивным процессом. Ее скорость в норме составляет 80-120 мл/мин и определяется следующими факторами:
-
состояние базальной мембраны,
-
число клубочков,
-
гидростатическое давление крови в клубочковых капиллярах,
-
гидростатическое давление ультрафильтрата в боуменовой капсуле,
-
онкотическое давление белков плазмы.
Последние три фактора определяют скорость фильтрации в здоровой почке по выражению:
Рфильтр = Ркрови – Ркапсул – Ронкот
где Рфильтр – фильтрационное давление, Ркрови – гидростатическое давление крови, Ркапсул – давление внутри капсулы, Ронкот – онкотическое давление белков.
Учитывая, что Ркрови = 70 мм рт.ст., Ркапсул = 30 мм рт.ст., Ронкот = 20 мм рт.ст., получаем значение эффективного фильтрационного давления равное 20 мм рт.ст. Изменение любого из указанных трех факторов неминуемо изменяет скорость образования мочи.
В то же время очевидно, что Ркапсул и Ронкот не могут изменяться быстро. Таким образом для обеспечения стабильного Рфильтр остается только возможность регулирования гидростатического давления Ркрови. Почки справляются с этой задачей, изменяя активность ренин-ангиотензиновой системы, при этом за счет увеличениясистемного артериального давления поддерживается стабильность почечного кровотока и, значит, должная величина фильтрационного давления.
РЕАБСОРБЦИЯ
Реабсорбция – это движение веществ из просвета канальца в кровь. 85% ультрафильтрата реабсорбируется в проксимальном отделе канальца.
Реабсорбции подвергаются почти все низкомолекулярные вещества, попавшие в фильтрат – глюкоза, аминокислоты, бикарбонаты, вода, электролиты, органические кислоты, частично мочевина и мочевая кислота.
В целом имеются два механизма перехода веществ через мембраны:
1. Простая и облегченная диффузия по градиенту осмолярности или концентрации.
2. Активный транспорт происходит против градиента концентраций и требует затраты энергии АТФ.
Диффузия используется для реабсорбции ионов натрия, калия, хлора, кальция, магния. Также по градиенту концентрации реабсорбируется СО2 (при реабсорбции карбонат-ионов), мочевина и вода.
Активный транспорт на апикальных мембранах эпителиоцитов представлен, как правило, вторичным активным транспортом. Им реабсорбируются глюкоза, аминокислоты, органические соединения. Первичный активный транспорт существует для ионов натрия на базолатеральной мембране (Na+,К+-АТФаза) и кальция (Са2+-АТФаза в дистальных канальцах).