- •1. Кровь, её функции. Основные физико-химические константы крови в норме и при патологии.
- •2. Белки плазмы крови, классификация, методы разделения.
- •3.Основные небелковые компоненты крови. Остаточный азот, его состав.
- •4.Принципы организации и механизмы регуляции кос.
- •5. Виды, причины и механизм развития алкалоза и ацидоза.
- •6. Эритроциты. Общая характеристика, строение, особенности метаболизма.
- •8. Биосинтез гема. Реакции, ферменты, локализация, регуляция и биологическая роль. Порфирии
- •9. Распад Hb в клетках рэс.
- •10. Метаболизм Fe
- •11. Особенности метаболизма лейкоцитов.
- •12. Особ метаболизма тромбоцитов, роль в гемостазе.
- •13. Механизм и стадии образования мочи.
- •Петля Генле обеспечивает реабсорбцию воды и солей
- •Реабсорбция кальция происходит в дистальном отделе
- •Конечный отдел нефрона определяет объем мочи
- •14. Органические и неорганические компоненты мочи норме/пат.
- •Калий Нормальные величины
- •Нормальные величины
- •Клинико диагностическое значение
- •Хлориды
- •Нормальные величины
- •Клинико диагностическое значение
- •Бикарбонаты
- •Нормальные величины
- •Клинико диагностическое значение
- •Фосфаты
- •Нормальные величины
- •Клинико диагностическое значение
- •Органические компоненты мочи Мочевина
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Креатинин
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Креатин
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Мочевая кислота
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Гиппуровая кислота
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Органические кислоты
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Пигменты
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Глюкоза
- •Нормальные величины
- •Клинико‑диагностическое значение
- •15. Нарушение процессов фильтрации, реабсорбции, секреции.
- •Лабораторная оценка реабсорбции Проксимальный каналец
- •Дистальный каналец
- •16. Гомеостатическая функция почек.
- •17. Особенность обмена белков и аминокислот в почках:
- •19. Функции печени. Особенности метаболизма гепатоцитов
- •20. Роль печени в углеводном обмене
- •21. Роль печени в липидном обмене
- •22.Роль печени в азотистом обмене.
- •24. Роль печени в регуляции кос, гормон гомеостаза и уровня бав.
- •I фаза метаболизма ксенобиотиков
- •Восстановление нитросоединений
- •II фаза метаболизма ксенобиотиков
- •25. Струк-функц и метабол характеристика мышечных волокон
- •26. Характеристика белков мышечной ткани
- •27. Роль мышечной ткани в межорганном обмене субстратами
- •28. Особенности метаболизма миокарда
- •30. Общая характеристика метаболизма нервной системы.
- •31. Нейромедиаторы, их характеристика и метаболизм
- •33. Биохим механизмы действ на мозг алк, нарк и токс соед.
- •34. Характеристика волокнистых структур ст.
- •35.Схема биосинтеза гликозамингликанов, их функциональная роль.
- •36.Костная и хрящевая ткань, хим сост и особ метаболизма.
- •37. Изменение ст при старении, коллагенозах, заживлении ран.
- •38.Механизмы канцерогенеза.
- •39. Биохимия легочной ткани. Причины и биохимические механизмы развития эмфиземы легких.
6. Эритроциты. Общая характеристика, строение, особенности метаболизма.
Главная функция эритроцита - транспорт газов: перенос О2 и СО2. Он возможен благодаря
большому содержанию гемоглобина и высокой активности фермента карбоангидразы.
Двояковогнутая форма эритроцитов имеет большую площадь поверхности по сравнению с клетками
сферической формы такого же размера. Это облегчает газообмен между клеткой и внеклеточной
средой. Кроме того, такая форма, а также особенности строения мембраны и цитоскелета обеспечивают
большую пластичность эритроцитов при прохождении ими мелких капилляров.
Зрелые эритроциты не имеют ядер, рибосом, митохондрий, лизосом. Поэтому обмен эритроцитов
имеет ряд особенностей:
1. В зрелых эритроцитах не идут реакции биосинтеза белков.
2. Образование энергии - только путем гликолиза, субстрат - только глюкоза.
В эритроцитах существуют механизмы предохранения гемоглобина от окисления:
1. Активно протекает ГМФ-путь распада глюкозы, дающий НАДФ.H2
2. Высока концентрация глутатиона - пептида, содержащего SH-группы.
Приблизительно 90% сухого вещества эритроцитов составляет гемоглобин, белок с повышенным содержанием железа.
При недостаточном поступлении железа с пищей или избыточной потребности (беременность) развивается железодефицитная анемия.
Важную роль в сохранении формы и способности к обратимой деформации эритроцитов играют липиды и белки плазматической мембраны.
Липиды бислоя плазматической мембраны эритроцитов, так же, как плазматические мембраны других клеток, содержат глицерофосфолипиды, сфингофосфолипиды, гликолипиды и холестерол. Увеличение содержания холестерола в составе мембраны, которое может наблюдаться при некоторыхзаболеваниях, снижает её текучесть и эластичность, а следовательно, и способность к обратимой
деформации. Это, в свою очередь, затрудняет движение эритроцитов через капилляры и можетспособствовать развитию гемостаза.
Спектрин с анкирином образуют гибкую сетевидную структуру, которая обеспечивает сохранение их формы при прохождении через узкие капилляры сосудов.
Интегральный белок полосы 3 - белок-переносчик ионов С1- и НСО3- через плазматическую мембрану эритроцитов по механизму пассивного антипорта. Мембранный фермент Nа+, К+-АТФ-аза обеспечивает
поддержание градиента концентраций Na+ и К+ по обе стороны мембраны. При снижении активности Na+, К+-АТФ-азы концентрация Na+ в клетке повышается, так как небольшие ионы могут проходить через мембрану простой диффузией. Это приводит к увеличению осмотического давления, увеличению поступления воды в эритроцит и к его гибели в результате разрушения клеточной мембраны - гемолизу.
Са2+-АТФ-аза - ещё один мембранный фермент, осуществляющий выведение из эритроцитов ионов кальция и поддерживающий градиент концентрации этого иона по обе стороны мембраны.
Антиоксидантную защиту осуществляет ферментативная система эритроцита предотвращающая токсическое действие активных форм кислорода (О-2 и н2О2) и разрушение мембран эритроцитов.
Глутатион - трипептид, состоящий из глютаминовой кислоты, глицина и цистеина. Мощный антиоксидант, который и предотвращает образование свободных радикалов, и предохраняет клетки отих повреждающего воздействия.
Глютатион нейтрализует кислородсодержащие молекулы до того, как они повредят клетки. Вместе с селеном он образует фермент глютатионпероксидазу, которая нейтрализует перекисьводорода. Глютатион защищает не только отдельные клетки, но и стенки артерий, мозг, сердце, иммунокомпетентные клетки, почки, хрусталик, печень, легкие и кожу от повреждающего действия свободных радикалов. Он играет большую роль в предупреждении рака (особенно рака печени), преждевременного старения.
7. Hb, его строение, свойства. Производные Hb, виды Hb. Гемоглобин— сложный железосодержащий белок животных и человека, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани.
Гемоглобин является сложным белком класса хромопротеинов, то есть в качестве простетической группы здесь выступает особая пигментная группа, содержащая химический элемент железо — гем.
Гемоглобин человека является тетрамером, то есть состоит из четырёх субъединиц. У взрослого человека они представлены полипептидными цепями α1, α2, β1 и β2. Субъединицы соединены друг сдругом по принципу изологического тетраэдра.
Главная функция гемоглобина состоит в переносе дыхательных газов: кислорода от легких к тканям и углекислого газа от тканей к легким.
Монооксид углерода (CO) связывается с гемоглобином крови прочнее, чем кислород, образуя карбоксигемоглобин (HbCO).
Некоторые процессы приводят к окислению иона железа в геме до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH). В обоих случаях блокируются процессы транспортировки кислорода.
Нормальным содержанием гемоглобина в крови человека считается: у мужчин 130—170 г/л (нижний предел −120, верхний предел −180 г/л), у женщин 120—150 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен значительным колебаниям. Миоглоби́н — кислород-связывающий белок скелетных мышц и мышцы сердца. Миоглобин высокотоксичен при его нахождении в свободном состоянии в плазме крови: крупные молекулы миоглобина могут закупоривать канальцы почек и приводить к их некрозу.
Конкурируя с гемоглобином эритроцитов за связывание с кислородом в лёгких и не выполняя функцию отдавания кислорода тканям, свободный миоглобин ухудшает кислородное снабжение тканей и приводит к развитию тканевой гипоксии.
Самоотравление организма свободным миоглобином и как следствие острая почечная недостаточность и тканевая гипоксия — одна из главных причин смерти при синдроме длительного сдавливания, встречающемся при тяжелых травмах со сдавлением или размозжением значительных количеств мышечной ткани.
Попадая в условия острой гипоксии, эритроциты активируют гликолиз, что сопровождается увеличением содержания 2,3-ДФГК, которая снижает сродство гемопротеида к кислороду, активирует дезоксигенацию крови в тканях, что носит приспособительный характер. При уменьшении уровня дифосфоглицерата противоположный эффект делает насыщение гемоглобина кислородом в лёгких более активным. Молекула ДФГК, присоединяясь к дезоксиHb в его центральной полости и образуя солевой мостик между двумя бета-цепями, оказывает весьма сильное влияние на сродство белка к кислороду. В физиологических условиях это свойство определяется величинами парциального давления газа в лёгких. При нахождении в высокогорных районах концентрация дифосфоглицерата в эритроцитах возрастает, а сродство гемоглобина к О2 снижается.
Интересно, что фетальный гемоглобин с ДФГК не взаимодействует, сохраняя поэтому повышенное сродство к кислороду и артериальной, и венозной крови.
Гемоглобинопатия — наследственное изменение или нарушение структуры белка гемоглобина, обычно приводящее к клинически или лабораторно наблюдаемым изменениям в его кислород-транспортирующей функции либо в строении и функции эритроцитов. К наиболее часто встречающимся гемоглобинопатиям относятся серповидно-клеточная анемия, бета-талассемия, персистенция фетального гемоглобина. Талассэмии – группа наследственных заболеваний с нарушением биосинтеза гемма, в результате гемоглобин, свойственный взрослым на 50 – 90% заменяется фетальным гемоглобином, в результате – гипоксия, гемолитические анемии, усиленное всасывание железа и отложение его во внутренних органах.