
- •1. Кровь, её функции. Основные физико-химические константы крови в норме и при патологии.
- •2. Белки плазмы крови, классификация, методы разделения.
- •3.Основные небелковые компоненты крови. Остаточный азот, его состав.
- •4.Принципы организации и механизмы регуляции кос.
- •5. Виды, причины и механизм развития алкалоза и ацидоза.
- •6. Эритроциты. Общая характеристика, строение, особенности метаболизма.
- •8. Биосинтез гема. Реакции, ферменты, локализация, регуляция и биологическая роль. Порфирии
- •9. Распад Hb в клетках рэс.
- •10. Метаболизм Fe
- •11. Особенности метаболизма лейкоцитов.
- •12. Особ метаболизма тромбоцитов, роль в гемостазе.
- •13. Механизм и стадии образования мочи.
- •Петля Генле обеспечивает реабсорбцию воды и солей
- •Реабсорбция кальция происходит в дистальном отделе
- •Конечный отдел нефрона определяет объем мочи
- •14. Органические и неорганические компоненты мочи норме/пат.
- •Калий Нормальные величины
- •Нормальные величины
- •Клинико диагностическое значение
- •Хлориды
- •Нормальные величины
- •Клинико диагностическое значение
- •Бикарбонаты
- •Нормальные величины
- •Клинико диагностическое значение
- •Фосфаты
- •Нормальные величины
- •Клинико диагностическое значение
- •Органические компоненты мочи Мочевина
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Креатинин
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Креатин
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Мочевая кислота
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Гиппуровая кислота
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Органические кислоты
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Пигменты
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Нормальные величины
- •Клинико‑диагностическое значение
- •Глюкоза
- •Нормальные величины
- •Клинико‑диагностическое значение
- •15. Нарушение процессов фильтрации, реабсорбции, секреции.
- •Лабораторная оценка реабсорбции Проксимальный каналец
- •Дистальный каналец
- •16. Гомеостатическая функция почек.
- •17. Особенность обмена белков и аминокислот в почках:
- •19. Функции печени. Особенности метаболизма гепатоцитов
- •20. Роль печени в углеводном обмене
- •21. Роль печени в липидном обмене
- •22.Роль печени в азотистом обмене.
- •24. Роль печени в регуляции кос, гормон гомеостаза и уровня бав.
- •I фаза метаболизма ксенобиотиков
- •Восстановление нитросоединений
- •II фаза метаболизма ксенобиотиков
- •25. Струк-функц и метабол характеристика мышечных волокон
- •26. Характеристика белков мышечной ткани
- •27. Роль мышечной ткани в межорганном обмене субстратами
- •28. Особенности метаболизма миокарда
- •30. Общая характеристика метаболизма нервной системы.
- •31. Нейромедиаторы, их характеристика и метаболизм
- •33. Биохим механизмы действ на мозг алк, нарк и токс соед.
- •34. Характеристика волокнистых структур ст.
- •35.Схема биосинтеза гликозамингликанов, их функциональная роль.
- •36.Костная и хрящевая ткань, хим сост и особ метаболизма.
- •37. Изменение ст при старении, коллагенозах, заживлении ран.
- •38.Механизмы канцерогенеза.
- •39. Биохимия легочной ткани. Причины и биохимические механизмы развития эмфиземы легких.
31. Нейромедиаторы, их характеристика и метаболизм
Передача возбуждения происходит в нервных окончаниях (синапсах), которые являются местом контакта между нейронами, а также между нейронами и мышечными клетками. В концевых пластинках хранятся химические вещества, нейромедиаторы, выполняющие сигнальные функции.
При поступлении нервного импульса медиаторы выделяются в синаптическую щель, передавая возбуждение нейронам или мышечным клеткам. Медиаторы- это метаболиты аминокислот. Существует свыше 40 медиаторов.
-
Группа - тормозные
-
возбуждающие
-
смешанного типа
Наиболее изучен ацетилхолин.
Сейчас выделены и изучены два вида холинорецепторов:
-
М-холинорецепторы (мускариновые)
-
Нхолинорецепторы (никотиновые).
Ацетилхолин — нейромедиатор моторной концевой пластинки.
Ацетилхолиновые рецепторы— это лиганд-активируемые ионные каналы, которые открываются для прохождения ионов Na+ и К+.
Никотиновые рецепторы (быстрые) локализованы главным образом в месте контакта аксонов со скелетными мышцами.
Мускариновые рецепторы (медленные) локализованы в головном мозге, секреторных клетках, гладких и сердечных мышцах.
Катехоламины — физиологически активные вещества, выполняющие роль химических посредников и «управляющих» молекул (медиаторов и нейрогормонов) в межклеточных взаимодействиях у животных и человека, в том числе в их мозге; производные пирокатехина. К катехоламинам относятся, в частности, такие нейромедиаторы, как адреналин, норадреналин, дофамин(допамин).
γ-Аминомасляная кислота выполняет в организме функцию ингибирующего медиатора центральной нервной системы. При выбросе ГАМК в синаптическую щель происходит активация ионных каналов ГАМКA- и ГАМКC-рецепторов, приводящая к ингибированию нервного импульса. ГАМК является основным нейромедиатором, участвующим в процессах центрального торможения.
Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.
Глутаминовая кислота является нейромедиаторной аминокислотой, одним из важных представителей класса «возбуждающих аминокислот». Связывание аниона глутамината со специфическими рецепторами нейронов приводит к возбуждению нейронов. Существуют ионотропные и метаботропные глутаминатные рецепторы.
Ионотропными рецепторами являются NMDA-рецепторы, AMPA-рецепторы.
Эндогенные лиганды глутаминатных рецепторов — глутаминовая кислота и аспарагиновая кислота. Для активации НМДА рецепторов также необходим глицин.
Глицин является нейромедиаторной аминокислотой. Рецепторы к глицину имеются во многих участках головного мозга и спинного мозга и оказывают «тормозное» воздействие на нейроны, уменьшают выделение из нейронов «возбуждающих» аминокислот, таких, как глутаминовая кислота, и повышают выделение ГАМК.
Серотонин играет роль нейромедиаторов ЦНС. Серотонинергические нейроны группируются в стволе мозга: воролиевом мостут и ядрах шва. От моста идут нисходящие проекции в спинной мозг, нейроны ядер шва дают восходящие проекции к мозжечку, лимбической системе, базальным ганглиям, коре.
32. Биохимические механизмы электрогенеза в нервной ткани. Этапы электрогенеза:
-
Синтез ацетилхолина в цитозоле нервного окончания.
-
Включение ацетилхолина в малые мембрансвязанные частицы, так называемые «синаптические пузырьки».
-
Высвобождение ацетилхолина из синаптических пузырьков в синаптическую щель путем экзоцитоза.
-
Импульс достигает нервного окончания и деполяризует его плазматическую мембрану.
-
Деполяризация приводит к непродолжительному открытию потенциалозависимых Са2+ -каналов в этой мембране. Поскольку концентрация Са2+ вне клетки более чем в 1000 раз превышает концентрацию свободного Са2+ внутри её, он устремляется внутрь нервного окончания.
-
Растущая концентрация Са2+ в его цитозоле и приводит к высвобождению ацетилхолина в синаптическую щель.
-
Молекулы ацетилхолина диффундируют через синаптическую щель, связываются с постсинаптическими рецепторами и активируют их.
-
В рецепторе открывается специальный канал, с помощью которого через мембрану проникают катионы. Поступление ионов Na+ приводит к деполяризации мышечной мембраны и формированию потенциала концевой пластинки, который обусловливает деполяризацию прилежащих мышечных мембран и генерацию потенциалов действия.
-
Потенциал действия распространяется на все мышечное волокно, и оно сокращается. Когда канал закрывается, АХ подвергается гидролизу под влиянием АХЭ.
Происходит следующая реакция:
Ацетилхолин + Н2О Ацетат + Холин