
- •Предисловие
- •Введение
- •1Атмосфера
- •3. Организация санитарной защиты воздушного бассейна
- •3.1. Предельно допустимые концентрации вредных веществ в воздухе
- •3.2. Предельно допустимые выбросы вредных веществ в атмосферный воздух
- •3.3. Требования при проектировании предприятий
- •3.4. Санитарная защита воздушного бассейна на предприятиях
- •3.5. Обоснование допустимых выбросов вредных веществ в атмосферу
- •3.5.1. Факторы, влияющие на рассеивание вредных веществ в атмосферном воздухе и загрязнение приземного слоя воздуха
- •3.5.2. Обоснование допустимых выбросов при рассеивании вредных веществ через высокие источники
- •4. Процессы пылегазоочистных установок и аппараты для пылегазоулавливания
- •4.1. Общие положения
- •Общие принципы анализа и расчета процессов и аппаратов
- •Интенсивность процессов и аппаратов
- •Моделирование и оптимизация процессов и аппаратов
- •4.2. Пылеулавливание
- •4.2.1. Параметры процесса пылеулавливания
- •4.2.2 Сухие пылеуловители
- •Принцип работы циклона
- •Основные характеристики цилиндрических циклонов
- •Расчёт циклонов
- •4.2.3. Мокрые пылеуловители
- •Принцип работы скруббера Вентури
- •Принцип работы форсуночного скруббера
- •Скрубберы центробежного типа
- •Принцип работы
- •Принцип действия барботажно-пенных пылеуловителей
- •4.2.4 Электрофильтры
- •Принцип работы двухзонного электрофильтра
- •4.2.5 Фильтры
- •Принцип работы рукавных фильтров
- •Туманоуловители
- •5. Очистка от промышленных газовых выбросов
- •5.1 Общие сведения о массопередаче
- •Равновесие в системе газ - жидкость
- •Фазовое равновесие. Линия равновесия
- •Материальный баланс. Рабочая линия
- •Направление массопередачи
- •Кинетика процесса абсорбции
- •Конвективный перенос
- •Дифференциальное уравнение массообмена в движущейся среде
- •Уравнение массоотдачи
- •Подобие процессов массоотдачи
- •Уравнение массопередачи
- •Зависимость между коэффициентом массопередачи и массоотдачи
- •5.2 Устройство абсорбционных аппаратов
- •5.3 Адсорбционная очистка газов
- •5.3.1Общие сведения
- •Равновесие и скорость адсорбции
- •5.3.2 Промышленные адсорбенты
- •Адсорбционная емкость адсорбентов
- •Пористая структура адсорбентов
- •Конструкция и расчёт адсорбционных установок
- •Расчет адсорбционных установок
- •5.4 Каталитическая очистка
- •5.4.1Общие сведения
- •Конструкции контактных аппаратов
- •Аппараты с взвешенным (кипящим) слоем катализатора
- •6. Тепловые процессы Общие положения
- •6.1 Температурное поле. Температурный градиент. Теплопроводность
- •Закон Фурье
- •Дифференциальное уравнение теплопроводности
- •Теплопроводность плоской стенки
- •Теплопроводность цилиндрической стенки
- •6.2 Тепловое излучение
- •Баланс теплового излучения
- •Закон Стефана – Больцмана
- •Закон Кирхгофа
- •Взаимное излучение двух твердых тел
- •Лучеиспускание газов
- •6.3 Передача тепла конвекцией
- •Тепловое подобие
- •Численные значения коэффициента теплоотдачи
- •Сложная теплоотдача
- •6.4 Теплопередача Теплопередача при постоянных температурах теплоносителя
- •Теплопередача при переменных температурах теплоносителя
- •Уравнение теплопередачи при прямотоке и противотоке Теплоносителей
- •4.5. Нагревание, охлаждение и конденсация Общие сведения
- •6.4.1 Нагревающие агенты и способы нагревания Нагревание водяным паром
- •Нагревание горячей водой
- •Нагревание топочными газами
- •Нагревание перегретой водой
- •Нагревание электрической дугой
- •6.4.2 Охлаждающие агенты, способы охлаждения и конденсации Охлаждение до обыкновенных температур
- •Охлаждение до низких температур
- •Конденсация паров
- •6.4.3 Конструкции теплообменных аппаратов
- •Расчет концентрации двуокиси серы
- •Пример расчета насадочного абсорбера
- •Пример расчёта теплообменника
- •Пример расчета электрофильтра
- •Методика расчета адсорбера
- •В ориентировочном расчете используется формула
- •4.2.8 Находим время защитного действия адсорбера
- •Библиографический список
- •Содержание
- •Макаров Володимир Володимирович
6. Тепловые процессы Общие положения
Перенос энергии в форме тепла, происходящий между телами, имеющими различную температуру, называется теплообменом. Движущей силой такого процесса является разность температур более нагретого и менее нагретого тел, при наличии которой тепло самопроизвольно, в соответствии со вторым законом термодинамики, проходит от более нагретого тела к менее нагретому телу.
Теплообмен между телами представляет собой обмен энергией между молекулами, атомами и свободными электронами; в результате теплообмена интенсивность движения частиц более нагретого тела снижается, а менее нагретого - возрастает.
Тела, участвующие в теплообмене, - теплоносители.
Теплопередача - наука о процессах распространения тепла. Законы теплопередачи лежат в основе тепловых процессов - нагревания, охлаждения, конденсации паров, выпаривания - и имеют большое значение для проведения многих процессов при очистке газов и жидкостей.
Различают три принципиально разных способа распространения тепла: теплопроводность, конвекция, тепловое излучение. Теплопроводность представляет собой перенос тепла вследствие беспорядочного (теплового) движения микрочастиц, соприкасающихся друг с другом.
В твердых телах теплопроводность является основным видом распространения теплоты.
Конвекция - перенос тепла вследствие движения и перемешивания макроскопических объемов газа или жидкости.
Перенос тепла возможен в условиях естественной или свободной, конвекции, обусловленной разностью плотностей в различных точках объема жидкости (газа), возникающей вследствие разности температур в этих точках или в целях вынужденной конвекции при принудительном движении всего объема жидкости.
Тепловое излучение - процесс распространения электромагнитных колебаний с различной длиной волн, обусловленный тепловым движением атомов или молекул излучающего тела.
В реальных условиях тепло передается, как правило, комбинированным способом. Перенос тепла от стенки к газообразной (жидкой) среде или в обратном направлении - теплоотдача. Еще более сложным является процесс передачи тепла от одного теплоносителя к другому через разделяющую их поверхность или твердую стенку. Этот процесс носит название теплопередачи.
Протекающие процессы теплообмена могут быть установившимися (стационарными) и неустановившимися (нестационарными).
Расчет теплообменной аппаратуры включает следующее
1. Определение теплового потока, т.е. количества тепла Q, которое должно быть передано за определенное время. Тепловой поток в единицу
времени вычисляется путем составления и решения тепловых балансов
где G1; и G2 - масса теплоносителя передающего и воспринимающего теплоту, соответственно в кг;
Ср1 и Ср2 - удельная изобарная теплоемкость теплоносителя передающего и воспринимающего теплоту, соответственно [Дж/кг град] ;
t2 , t1 • конечная и начальная температура теплоносителя передающего теплоту, °С;
t2‘, t1’ - конечная и начальная температура теплоносителя воспринимающего теплоту ,°С;
F -поверхность теплообмена соприкасающихся теплоносителей через твердую стенку, м2;
К- коэффициент теплопередачи, [Вт/м2 град];
∆yср - средняя движущая сила теплопередачи ( средняя разность
температур между теплоносителями), °С.
Определение поверхности теплообмена F является одной из задач в тепловых процессах., которая определяется из уравнения:
.