Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Test_po_bekhe.doc
Скачиваний:
25
Добавлен:
22.11.2019
Размер:
3 Mб
Скачать

Выберите все правильные ответы:

31. Продуктами первого этапа катаболизма питательных веществ являются:

А. пируват

Б. глицерол

В. аминокислоты

Г. ацетил-КоА

Д. моносахариды

32. Продуктами первого этапа катаболизма питательных веществ являются:

А. глюкоза

Б. глицерол

В. углекислый газ

Г. ацетил-КоА

Д. пируват

33. Пируват образуется при катаболизме:

А. жирных кислот

Б. глюкозы

В. фруктозы

Г. аминокислот

Д. глицерола

34. Ацетил-КоА образуется при катаболизме:

А. глицерола

Б. глюкозы

В. фруктозы

Г. аминокислот

Д. жирных кислот

35. Ацетил-КоА образуется при катаболизме:

А. пирувата

Б. глюкозы

В. фруктозы

Г. глицерола

Д. жирных кислот

36. Углекислый газ является одним из продуктов реакций, катализируемых ферментами:

А. изоцитратдегидрогеназой

Б. сукцинатдегидрогеназой

В. пируватдегидрогеназой

Г. α-кетоглутаратдегидрогеназой

Д. малатдегидрогеназой

37. В реакциях окислительного декарбоксилирования α-кетокислот (пирувата, α-кетоглутарата) участвуют:

А. НАД+.

Б. ТДФ

В. НS-КоА

Г. ФАД

Д. липоевая кислота

38. ФАД является коферментом для:

А. сукцинатдегидрогеназы

Б. пируватдегидрогеназы

В. α-кетоглутаратдегидрогеназы

Г. фумаразы

Д. изоцитратдегидрогеназы

39. НАД+-зависимыми ферментами цикла Кребса являются:

А. сукцинатдегидрогеназа

Б. цитратсинтаза

В. малатдегидрогеназа

Г. α-кетоглутаратдегидрогеназа

Д. аконитаза

40. НАДН2 является одним из продуктов реакций, катализируемых ферментами:

А. изоцитратдегидрогеназой

Б. сукцинатдегидрогеназой

В. пируватдегидрогеназой

Г. α-кетоглутаратдегидрогеназой

Д. малатдегидрогеназой

41. В состав коферментов пируватдегидрогеназного комплекса входят витамины:

А. В12

Б. PP

В. В6

Г. В1

Д. В2

42. Тиаминдифосфат входит в состав ферментов, катализирующих превращение:

А. цитрат → изоцитрат

Б. пируват → ацетил-КоА

В. α-кетоглутарат → сукцинил-КоА

Г. фумарат → малат

Д. сукцинат → фумарат

43. Реакции окисления в цикле Кребса происходят при превращении:

А. α-кетоглутарата в сукцинил-КоА

Б. малата в оксалоацетат

В. сукцината в фумарат

Г. фумарата в малат

Д. изоцитрата в α-кетоглутарат

44. Ингибиторами пируватдегидрогеназного комплекса являются:

А. АДФ

Б. АТФ

В. НАДН2

Г. Ацетил-КоА

Д. НАД+

45 Регуляторными ферментами цикла Кребса являются:

А. α-кетоглутаратдегидрогеназный комплекс

Б. сукцинатдегидрогеназа

В. изоцитратдегидрогеназа.

Г. цитратсинтаза

Д. аконитаза

Тема: МИТОХОНДРИАЛЬНАЯ ДЫХАТЕЛЬНАЯ ЦЕПЬ. ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ. МИКРОСОМАЛЬНОЕ ОКИСЛЕНИЕ

Вопросы открытого типа

1. (4) Дайте определение понятия «окислительное фосфорилирование», укажите отличие его от субстратного фосфорилирования. Укажите локализацию процесса окислительного фосфорилирования в клетке.

2. (4) Укажите последовательность и приведите названия компонентов митохондриальной дыхательной цепи.

3. (4) Охарактеризуйте І комплекс в цепи переноса электронов (название, компоненты, локализация, донор электронов, акцептор электронов).

4. (4) Охарактеризуйте ІI комплекс в цепи переноса электронов (название, компоненты, локализация, донор электронов, акцептор электронов).

5. (4) Охарактеризуйте III комплекс в цепи переноса электронов (название, компоненты, локализация, донор электронов, акцептор электронов).

6. (4) Охарактеризуйте ІV комплекс в цепи переноса электронов (название, компоненты, локализация, донор электронов, акцептор электронов).

7. (4) Перечислите цитохромы, которые являются компонентами митохондриальной дыхательной цепи. Назовите класс белков, к которому они относятся и их простетическую группу.

8. (4) Опишите функционирование Н+-зависимой АТФ-азы. Укажите локализацию и источник энергии для работы Н+-зависимой АТФ-азы.

9. (4) Дайте определение понятия «протонный трансмембранный потенциал». Опишите процесс его образования (локализация, источник энергии, белки, участвующие в его создании)

10. (4) Опишите механизм разобщения окисления и фосфорилирования, укажите последствия этого процесса в клетке. Приведите примеры веществ разобщителей окисления и фосфорилирования.

11. (4) Дайте определение понятия «микросомальное окисление». Укажите локализацию процесса, субстратную специфичность и биологическую роль.

12. (4) Представьте в виде схемы цепь переноса электронов от НАДФН к кислороду при микросомальном окислении. Укажите факторы, влияющие на количество цитохрома Р450 в клетках печени.

13. (3) Представьте в виде схемы превращение пирувата в ацетил-КоА. Рассчитайте выход АТФ при окислении восстановленных форм коферментов, образующихся в этом процессе, и коэффициент Р/О.

14. (3) Представьте в виде схемы превращение цитрата в α-кетоглутарат. Рассчитайте выход АТФ при окислении восстановленных форм коферментов, образующихся в этом процессе, и коэффициент Р/О.

15. (3) Представьте в виде схемы превращение изоцитрата в сукцинил-КоА. Рассчитайте выход АТФ при окислении восстановленных форм коферментов, образующихся в этом процессе, и коэффициент Р/О.

16. (3) Представьте в виде схемы превращение α-кетоглутарата в фумарат. Рассчитайте выход АТФ при окислении восстановленных форм коферментов, образующихся в этом процессе, и коэффициент Р/О.

17. (3) Представьте в виде схемы превращение цитрата в сукцинат. Рассчитайте выход АТФ при окислении восстановленных форм коферментов, образующихся в этом процессе, и коэффициент Р/О.

18. (3) Представьте в виде схемы превращение сукцинил-КоА в малат. Рассчитайте выход АТФ при окислении восстановленных форм коферментов, образующихся в этом процессе, и коэффициент Р/О.

19. (3) Представьте в виде схемы превращение α-кетоглутарата в малат. Рассчитайте выход АТФ при окислении восстановленных форм коферментов, образующихся в этом процессе, и коэффициент Р/О.

20. (3) Представьте в виде схемы превращение изоцитрата в фумарат. Рассчитайте выход АТФ при окислении восстановленных форм коферментов, образующихся в этом процессе, и коэффициент Р/О.

21. (3) Представьте в виде схемы превращение сукцината в оксалоацетат. Рассчитайте выход АТФ при окислении восстановленных форм коферментов, образующихся в этом процессе, и коэффициент Р/О.

22. (3) Представьте в виде схемы превращение цитрата в сукцинат. Рассчитайте выход АТФ при окислении восстановленных форм коферментов, образующихся в этом процессе, и коэффициент Р/О.

23. (3) Представьте в виде схемы превращение фумарата в оксалоацетат. Рассчитайте выход АТФ при окислении восстановленных форм коферментов, образующихся в этом процессе, и коэффициент Р/О.

24. (3) Представьте в виде схемы превращение α-кетоглутарата в сукцинат. Рассчитайте выход АТФ при окислении восстановленных форм коферментов, образующихся в этом процессе, и коэффициент Р/О.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]