
- •3. Пределы функций
- •Замечательные пределы. Примеры решений
- •4. Производные функций Как найти производную? Примеры решений
- •Производная сложной функции. Примеры решений
- •Сложные производные. Логарифмическая производная. Производная степенно-показательной функции
- •Сложные производные
- •Логарифмическая производная
- •Производная степенно-показательной функции
- •Производная функции, заданной неявно. Производная параметрически заданной функции
- •Производная функции, заданной неявно
- •Производная параметрически заданной функции
- •Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Уравнение касательной к графику функции
- •Дифференциал функции одной переменной
- •Вторая производная
- •4. 2.Частные производные. Примеры решений
- •Приближенные вычисления с помощью дифференциала
- •Приближенные вычисления с помощью дифференциала функции одной переменной
- •Абсолютная и относительная погрешность вычислений
- •Приближенные вычисления с помощью полного дифференциала функции двух переменных
- •Частные производные функции трёх переменных
- •Частные производные второго порядка функции трёх переменных
- •5. Интегралы
- •5.1. Неопределенный интеграл. Подробные примеры решений
- •5.1.1. Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Метод замены переменной в неопределенном интеграле
- •5.1.2. Интегрирование по частям. Примеры решений
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •5.1.3.Интегралы от тригонометрических функций. Примеры решений
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •5.1.4. Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложение числителя
- •Метод подведения под знак дифференциала для простейших дробей
- •Метод выделения полного квадрата
- •Подведение числителя под знак дифференциала
- •Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Интегрирование неправильной дробно-рациональной функции
- •5.1.5. Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •5.1.6. Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям
- •Методом сведения интеграла к самому себе
- •Интегрирование сложных дробей
- •Интеграл от неразложимого многочлена 2-ой степени в степени
- •Интегрирование сложных тригонометрических функций
- •Интеграл от корня из дроби
- •5.2. Определенный интеграл. Примеры решений
- •5.2.1. Замена переменной в определенном интеграле
- •5.2.2. Метод интегрирования по частям в определенном интеграле
- •Уважаемый студент, распечатай и сохрани:
- •5.2.3. Определенный интеграл. Как вычислить площадь фигуры
- •5.2.3. Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Теперь немного о геометрических иллюзиях.
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •5.3. Несобственные интегралы. Примеры решений
- •5.3.1. Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •5.3.2. Несобственные интегралы от неограниченных функций
- •5.4. Эффективные методы решения определенных и несобственных интегралов
- •5.4.1. Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •1) Подынтегральная функция является чётной, отрезок интегрирования симметричен относительно нуля, поэтому:
- •Вычисление площади круга с помощью определенного интеграла Тригонометрическая подстановка
- •5.4.2. Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •5.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом
- •5.4.4. Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •5.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •5.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •5.5. Как вычислить определенный интеграл по формуле трапеций и методом Симпсона?
- •Как вычислить определенный интеграл методом трапеций?
- •Как вычислить определенный интеграл по формуле Симпсона?
Интегралы от экспоненты, умноженной на многочлен
Общее правило: за всегда обозначается многочлен
Пример 5
Найти неопределенный интеграл.
Решение:
Используя знакомый алгоритм, интегрируем по частям:
Если
возникли трудности с интегралом
,
то следует вернуться к статье Метод
замены переменной в неопределенном
интеграле.
Единственное, что еще можно сделать, это «причесать» ответ:
Но
если Ваша техника вычислений не очень
хороша, то самый выгодный вариант
оставить ответом
или
даже
То есть, пример считается решенным, когда взят последний интеграл. Ошибкой не будет, другое дело, что преподаватель может попросить упростить ответ.
Пример 6
Найти неопределенный интеграл.
Это
пример для самостоятельного решения.
Данный интеграл дважды интегрируется
по частям. Особое внимание следует
обратить на знаки – здесь легко в них
запутаться, также помним, что
–
сложная функция.
Больше про экспоненту рассказывать особо нечего. Могу только добавить, что экспонента и натуральный логарифм взаимно-обратные функции, это я к теме занимательных графиков высшей математики =) Стоп-стоп, не волнуемся, лектор трезв.
Интегралы от тригонометрических функций, умноженных на многочлен
Общее правило: за всегда обозначается многочлен
Пример 7
Найти неопределенный интеграл.
Интегрируем по частям:
Хммм, …и комментировать нечего.
Пример 8
Найти
неопределенный интеграл
Это пример для самостоятельного решения
Пример 9
Найти
неопределенный интеграл
Еще один пример с дробью. Как и в двух предыдущих примерах за обозначается многочлен.
Интегрируем
по частям:
Если
возникли трудности или недопонимание
с нахождением интеграла
,
то рекомендую посетить урок Интегралы
от тригонометрических функций.
Пример 10
Найти
неопределенный интеграл
Это пример для самостоятельного решения.
Подсказка: перед использованием метода интегрирования по частям следует применить некоторую тригонометрическую формулу, которая превращает произведение двух тригонометрических функций в одну функцию. Формулу также можно использовать и в ходе применения метода интегрирования по частям, кому как удобнее.
Вот, пожалуй, и всё в данном параграфе. Почему-то вспомнилась строчка из гимна физмата «А синуса график волна за волной по оси абсцисс пробегает»….
Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
Общее правило: за всегда обозначается обратная тригонометрическая функция.
Напоминаю, что к обратным тригонометрическим функциям относятся арксинус, арккосинус, арктангенс и арккотангенс. Для краткости записи я буду называть их «арками»
Пример 11
Найти
неопределенный интеграл.
Решаем.
Интегрируем
по частям:
Интеграл
найден
методом подведения функции под знак
дифференциала, можно использовать и
метод замены в «классическом» виде.
Аналогичный пример мы разбирали на
уроке Метод
замены переменной в неопределенном
интеграле.
Таким образом, помимо «чистого» интегрирования по частям нередко требуется применять и другие методы, приёмы решения.
Пример 12
Найти
неопределенный интеграл.
Это пример для самостоятельного решения
И
заключительный пример сегодняшнего
урока под счастливым номером тринадцать:
«арк», умноженный на многочлен. Он
сложнее, и предназначен для маньяков желающих
лучше разобраться в методе интегрирования
по частям. Пример, пожалуй, будет тоже
для самостоятельного решения, поскольку
меня немного утомил тот логарифм в
квадрате.
Пример 13
Найти
неопределенный интеграл.
Рассмотренный метод часто применяется в комбинации с другими приёмами решения интегралов. Читатели с хорошими навыками могут ознакомиться с такими примерами на уроке Сложные интегралы.
Решения и ответы:
Пример 3: Решение:
Пример 4: Решение:
Интегрируем
по частям:
Пример 6: Решение:
Дважды интегрируем по частям:
Пример 8: Решение:
Интегрируем
по частям:
Пример 10: Решение:
Интегрируем
по частям:
Примечание:
Здесь мы использовали известную
тригонометрическую формулу двойного
угла
.
Её можно было использовать и сразу:
,
а потом интегрировать по частям.
Похожим
способом также решаются интегралы
вроде
,
–
в них необходимо (сразу или в ходе
решения) понизить степень синуса
(косинуса) с помощью соответствующих
формул. Более подробно – см. Интегралы
от тригонометрических функций.
Пример 12:
Интегрируем
по частям:
Пример 13:
Интегрируем
по частям:
Примечание: Если возникли трудности с интегралом
,
то следует посетить урок Интегрирование некоторых дробей.