- •Элементарная математика
- •Часть1. (Алгебра и начала анализа)
- •29. Решение уравнений вида 47
- •30. Решение уравнений вида 47
- •31. Решение уравнений вида 48
- •Основные определения
- •Свойства функции и её график
- •Свойства:
- •Область определения функции
- •Множество значений функции:
- •Периодичность:
- •Свойства функции и её график
- •Свойства:
- •Свойства функции и её график. Взаимное расположение графика квадратичной функции и оси абсцисс.
- •Свойства:
- •Интервалы возрастания/убывания
- •Наибольшее/наименьшее значение функции
- •График функции.
- •Взаимное расположение графика квадратичной функции и оси абсцисс.
- •Свойства функции и её график
- •Свойства:
- •Свойства функции и её график
- •Свойства:
- •Свойства функции и её график
- •Свойства:
- •Область определения функции: .
- •Множество значений функции:
- •Периодичность:
- •Чётность/нечётность
- •Точки пересечения графика с осями координат.
- •Промежутки знакопостоянства функции:
- •Интервалы возрастания/убывания
- •Наибольшее/наименьшее значение функции.
- •График функции.
- •Свойства функции и её график
- •Свойства:
- •Область определения функции: .
- •Множество значений функции:
- •Периодичность:
- •Чётность/нечётность
- •Точки пересечения графика с осями координат.
- •Промежутки знакопостоянства функции:
- •Интервалы возрастания/убывания
- •Свойства функции и её график
- •Свойства:
- •Свойства функции и её график
- •Свойства:
- •Наибольшее/наименьшее значение функции.
- •График функции.
- •Свойства степени. Показательная функция и её свойства.
- •Свойства степени с натуральным показателем
- •Свойства степени с действительным показателем
- •Свойства:
- •Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, степени, частного. Зависимость между логарифмами числа по разным основаниям.
- •Логарифмическая функция и ее свойства.
- •Свойства:
- •Наибольшее/наименьшее значение функции
- •Преобразование графиков функций
- •Формула корней квадратного уравнения. Теорема Виета. Формула корней квадратного уравнения.
- •Теорема Виета.
- •Разложение квадратного трехчлена на линейные множители
- •Формулы сокращенного умножения.
- •Свойства числовых неравенств.
- •Свойства числовых равенств.
- •Метод интервалов
- •Формулы приведения.
- •Зависимости между тригонометрическими функциями одного и того же аргумента
- •Тригонометрические функции двойного и половинного аргумента
- •Преобразование суммы (разности) в произведение
- •Преобразование произведения в сумму.
- •Обратные тригонометрические функции. (Теорема о корне и теорема об обратной функции)
- •Арксинус
- •Арккосинус
- •Арктангенс
- •Арккотангенс
- •Решение уравнений вида
- •Решение уравнений вида
- •Решение уравнений вида
- •Решение уравнений вида
- •Решение уравнений типа с помощью вспомогательного аргумента.
- •Признаки делимости на 2,3,5,9,10.
- •Делимость на 2
- •Делимость на 3 на 9
- •Делимость на 5
- •Делимость на 10
- •Квадратный корень из числа. Арифметический квадратный корень, его свойства. Корень и арифметический корень п-ой степени
- •Свойства арифметического квадратного корня
- •Cвойства
- •Арифметическая прогрессия. Формулы п-го члена и суммы п первых членов арифметической прогрессии. Характеристическое свойство арифметической прогрессии.
- •Геометрическая прогрессия. Формулы п-го члена и суммы п первых членов геометрической прогрессии. Характеристическое свойство геометрической прогрессии.
- •Тригонометрическая окружность
- •Сборник формул
- •Библиографический список
Формулы приведения.
Тригонометрические функции углов вида , , , могут быть выражены через функции угла с помощью формул, которые называются формулами приведения.
Формулы приведения предназначены для того, чтобы выражать значения тригонометрических функций произвольных углов через функции острого угла.
В се приводимые ниже формулы справедливы при произвольных значениях угла (естественно, входящих в область определения соответствующих функций), хотя применяются преимущественно в тех случаях, когда угол – острый.
Докажем сначала, что для любого
и
Для определённости предположим, что . Тогда для угла справедливо двойное неравенство . Рассмотрим радиусы и , образующие углы и с положительным направлением оси соответственно (рис. 17). Опустим из точек и перпендикуляры на ось . Полученные треугольники и равны, поскольку они прямоугольные, , имеют равные гипотенузы ( ) и равные острые углы: .
Из равенства треугольников следует, что и . Следовательно, , . Вторая формула получается с помощью аналогичных рассуждений.
Для тангенса и котангенса формулы приведения следуют из равенств
и .
Из формул , а также с учётом чётности и нечётности тригонометрических функций можно получить формулы
, , , .
Например, .
Формулы приведения для синуса и косинуса угла выглядят так:
и .
Для доказательства достаточно представить в виде и дважды воспользоваться формулами . Аналогичные формулы для тангенса и котангенса , можно получить с помощью формул приведения для синуса и косинуса.
Из формул (3) следует:
, , , . (20.4)
Для доказательства достаточно представить в виде суммы и применить формулы (20.3).
Формулы приведения для углов имеют вид
, , , .
Для доказательства этих формул надо представить и последовательно применить формулы (20.3) и (20.1).
Справедливы также формулы
, , , .
Перечисленные выше формулы могут быть обобщены одним правилом:
Любая тригонометрическая функция угла по абсолютной величине равна той же функции угла , если число n - чётное, и ко-функции этого же угла, если n – нечётное.
При этом если функция угла положительна, когда – острый положительный угол, то знаки обеих функций одинаковы; если отрицательна, то различны.
Зависимости между тригонометрическими функциями одного и того же аргумента
Теорема (основное тригонометрическое тождество).
Для любого угла справедливо тождество .
Доказательство.
П усть дан некоторый угол . Тогда координаты конца радиуса тригонометрического круга, составляющего угол с положительным направлением оси , будут равны по определению , (рис.18). Так как квадрат расстояния между любыми двумя точками плоскости, заданными своими координатами, равен сумме квадратов разностей одноимённых координат, то квадрат расстояния от точки до точки (равный единице, поскольку - конец радиуса единичной длины) определяется равенством ,
откуда следует .
Между основными тригонометрическими функциями произвольного аргумента α имеются следующие соотношения.
Основное тригонометрическое тождество
.
Доказательство тождества приведено выше.
По определению тангенса и котангенса выполнено
, для , ;
, для , .
Перемножая последние два соотношения, получим
для , .
4. Разделив основное тригонометрическое тождество почленно на и и выполнив несложные преобразования, получим соответственно
для , .
Аналогично для , .