Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TJ-konspekt-lektsiy.docx
Скачиваний:
0
Добавлен:
17.11.2019
Размер:
479.05 Кб
Скачать

Домашнє завдання

  1. За даними вибірки

8,5 8,4 7,95 7,7 8,0 8,25 8,2 8,2 8,45 8,5 8,8 8,0 8,3 8,3 8,25 8,0 знайти довірчі інтервали для оцінки математичного сподівання а нормального розподілу з надійністю γ=0,95; 0,99; 0,999.

  1. Відомі середнє квадратичне відхилення нормального розподілу випадкової величини Х, вибіркова середня в, об’єм вибірки n. Знайти довірчий інтервал для математичного сподівання а при заданій надійності = 0,99:

= 6; в = 20,2; n = 100.

  1. Приведено дані виробітку на одного робітника із 65 робітників у звітному році в процентах у відношенні з минулим роком: 105; 120; 97; 130; 80; 95; 100; 85; 115; 80; 105; 100; 105; 97; 80; 130; 97; 105; 100; 80; 120; 97; 195; 95; 97; 130; 100; 120; 80; 105; 100; 105; 97; 110; 115; 80; 97; 100; 110; 80; 130; 80; 97; 100; 105; 100; 80; 120; 97; 195;115; 105; 120; 97; 130; 80; 110; 105; 115; 97; 80; 105; 100; 100; 80. Знайти довірчий інтервал для математичного сподівання при = 0,95.

  2. Лекція 12 Поняття статистичної гіпотези. Статистичний критерій.

Критерій Пірсона. Критерій Колмогорова

Нехай випадкова величина X розподілена за законом F (xi; j) і нехай на ос­нові вибірки х1, х2, .... , хn, здобутої із генеральної сукупності з функцією розпо­ділу F (xi; j), робимо деякі припущення (гіпотези): або про вид функції F (xi; j), або про параметри j цієї функції. Припущення такого роду називаються статистичними гіпотезами.

Статистична гіпотеза називається параметричною, якщо в ній сформульовані припущення відносно значень параметрів функції розподілу відомого виду, непараметричною - якщо в ній сформульовані припущення відносно виду самої функції розподілу. Статистичні гіпотези поділяються на нульові Н0 (основні) і альтернативні Н1 (конкуруючі).

Перевірка статистичних гіпотез здійснюється на основі даних вибірки. Для цього застосовують певну виборчу статистику К, яка є функцією спостережених значень, точний або приблизний розподіл якої відомий. Випадкову величину К, за допомогою якої приймається рішення про прийняття або відхилення нуль - гіпоте­зи, називаються статистичним критерієм. Статистичним критерієм значущості називається правило відхилення нульової гіпотези, яке заключається в розбитті області можливих значень випадкової величини К на дві під області, що не перетинаються, причому нульова гіпотеза відхиляється, якщо спостережне значення критерію К на­лежить критичній під області і вважається узгодженою з дослідним, якщо К не на­лежить критичній під області. При цьому, так як рішення приймається на основі ви­бірки скінченого об'єму, дослідник може зробити слідуючи помилки: а) прийняти невірну гіпотезу (помилка першого роду); в) відхилити вірну гіпотезу (помилка другого роду).

Ймовірність зробити помилку першого роду Р (Н1/ Н0) = α – називається рів­нем значущості статистичного критерію. Величину 1 - Р (Н1/ Н0) = 1 - β називають потужністю критерію.

Перевірка гіпотези про припущений закон розподілу проводиться за допомогою непараметричних критеріїв значущості. Основна група непараметричних критеріїв значущості - критерії згоди, за допомогою яких перевіряються нульові гіпотези від­носно загального вигляду функцій розподілу. Задача визначення критерію згоди ставиться у такий спосіб: нехай х1, х2,..., хn – випадкова вибірка, тобто спостережені значення випадкової величини X, і нехай f*(х) – статистична щільність розподілу; за­дамо деяку невід'ємну міру D відхилення емпіричної функції f*(х) від гіпотетичної теоретичної функції f(х).

D = D{f*(х),f(х)}.

Найбільш поширені критерії згоди: критерій Пірсона χ2, λ – критерій Колмогоро­ва.

Критерій згоди Пірсона χ2.

Нехай випадкова величина має функцію розподілу ймовірностей F (х), яка належить деякому класу функції Ω визначеного виду (нормальних, показникових, біномінальних та інших) і нехай з генеральної сукупності вилучена вибірка об'єму n: х1, х2,..., хn. Треба перевірити нульову гіпотезу Н0: F(x) Ω при конкуруючій гіпотезі Н1: F(x) Ω.

Схема міркувань при перевірці гіпотези Н0 за допомогою критерію згоди Пір­сона складається з подальшого: висуваємо гіпотезу Н0: X ~ N(α;σ) випадкова величина розподілена за нормальним законом, при конкуруючій гіпотезі Н1: X ~ N(α;σ), випадкова величина не розподілена за нормальним законом.

Для перевірки гіпотези:

1) Складають згрупований статистичний ряд.

2) Обчислюють ймовірності попадання випадкової величини X у часткові інтервали (xj-1; xj) ,для цього треба попередньо пронормувати величину, тобто знайти значення . Pj = P{xj-1 < X < xj} = P{uj-1 <X <uj}= Ф(uj) –Ф(uj-1).

3) Визначають теоретичні частоти прі часткових інтервалів.

4) Обчислюють вибіркову статистику (критерій)

Якщо нульова гіпотеза вірна, то при n → ∞ закон розподілу даної статистики χ2, незалежно від виду функції F (х), прямує до закону розділу χ2 з числом ступе­нів вільності f = k - r - 1 (k – кількість інтервалів; r – кількість параметрів гіпотетич­ної функції F (х)).

5) По таблицям χ2 – розподілу (див. додатки), по заданому рівню значущості  і кількості степе­нів вільності f = k - r - 1 (для нормального розподілу r = 2) знаходять критичне значення χ 2(f) порівнюючи значення вибіркової статистики χ2, що спостері­гається з критичним значенням χα2 (f) і приймають одне з двох рішень:

- якщо χ2 < χα2 (f) , то не існує потреби для відхилення нульової гіпотези;

- якщо χ2 ≥ χα2 (f) , то приймається конкуруюча гіпотеза Н1.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]