Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Общий УМК 3.doc
Скачиваний:
39
Добавлен:
14.11.2019
Размер:
4.61 Mб
Скачать

3.2. Опорный конспект по курсу “ Математика ч.2. Теория вероятностей и элементы математической статистики” введение

Теория вероятностей – это математическая наука, изучающая закономерности в случайных явлениях. Случайные явления – это такие явления, которые при неоднократном воспроизведении одного и того же опыта с соблюдением некоторого комплекса условий протекают по-разному, что ведет к различным результатам опыта. Примеры случайных явлений можно наблюдать во многих областях науки и техники.

Теория вероятностей основывается на построении математических моделей случайных явлений, изучении свойств моделей и применяется в задачах, которые требуют определения и расчета вероятностей отдельных испытаний или серии опытов, а также для определения надежности или устойчивости работы устройств, приборов или систем обслуживания.

Настоящий «Опорный конспект» содержит теоретические основы дисциплины Математика ч. 2. Теория вероятностей и элементы математической статистики, состоит из 3-х разделов, включает варианты решения различных задач, прилагаются вопросы для самопроверки и тестовые вопросы.

___________________________________________________________________

* Нумерация рубрик данного параграфа не зависит от нумерации всего УМК.

Раздел 1. Случайные события

Данный раздел курса Теория вероятностей и элементы математической статистики содержит краткое изложение теоретического материала для изучения понятия случайного события, классификации событий.

Кроме того, приводится классическое и геометрическое определение вероятности, сформулированы аксиомы о вероятностях и следствия из них. Рассматриваются несовместные и независимые события и приводятся формулы, по которым можно вычислить вероятность суммы и произведения различных событий, а также формула для вычисления вероятности по схеме Бернулли, формула полной вероятности и формула Байеса.

Каждое понятие или приводимая формула обязательно поясняется примером, решение которого позволяет увидеть, в каких случаях следует использовать конкретную формулу, что в большой степени определяется формулировкой поставленной задачи.

Изучив материал раздела, студент может проверить свои знания по вопросам для самопроверки, которые даются в конце каждой темы, а также разобрать репетиционный тест № 1, приведенный в Блоке контроля освоения дисциплины. После того, как эта часть работы проделана, студент может приступить к выполнению задачи № 1 из методических указаний по выполнению контрольной работы по вычислительной математике, основам теории вероятностей и элементам математической статистики [ 8 ].

1.1. Понятие случайного события

1.1.1. Сведения из теории множеств

Понятие множества относится к фундаментальным понятиям математики. Под множеством понимают некоторую совокупность объектов, называемых элементами множества. Для задания множества можно или перечислить все элементы, в него входящие, или определить свойства, которыми они обладают. Множества обозначают прописными буквами A, B, …, а их элементы строчными буквами a, b,… и заключают в фигурные скобки.

Пример 1.1. Обозначим A - множество положительных целых чисел, меньших 6

A = { 1,2,3,4,5}.

Пример 1.2. Обозначим B – множество всех действительных чисел

B = {x: }.

Пример 1.3. Обозначим C множество всех жителей некоторого города, которые старше 90 лет. Если x обозначает возраст жителя этого города, то все элементы множества C можно определить

C= {x: x>90}.

Выражение "элемент a принадлежит множеству A" будем символически записывать a A, а запись a A будет означать " элемент a не принадлежит множеству A".

Множества, состоящие из конечного числа элементов, называют конечными, в противном случае – бесконечными. В примерах 1.1 и 1.3 определены конечные множества, а примером бесконечного множества является множество из примера 1.2.

Символом Ø будем обозначать множество, не содержащее элементов. Это множество называют пустым множеством. Например, для некоторого города множество C в примере 1.3 может оказаться пустым.

Множество B называют подмножеством множества A, если все элементы B принадлежат множеству A, и символически записывают или .