
- •Глава 12. Массообмен
- •12.1. Фазовые равновесия
- •12.2. Различные модификации уравнений массоотдачи и массопередачи
- •12.2.2. Уравнение массопередачи в локальной форме
- •12.2.3. Интегральная форма уравнения массопередачи
- •12.2.4. Объемные коэффициенты массоотдачи и массопередачи
- •12.2.5. Число и высота единиц переноса
- •12.3. Аналогия тепло- и массообмена
- •12.4. Упрощенные модели массоотдачи
- •12.5. Массообмен с тонкой пленкой жидкости
- •12.6. Физическое моделирование массообмена
- •12.7. Основы классификации и расчета массообменных аппаратов
- •12.7.1. Классификация массообменных аппаратов
- •12.7.2. Схема технологического расчета аппарата с непрерывным контактом фаз
- •12.7.3. Специфика расчета аппарата со ступенчатым контактом фаз
- •Определение числа тарелок с помощью к.П.Д. Колонны. Вводится понятие к.П.Д. Колонны как отношение числа теоретических тарелок Nт к числу действительных тарелок n:
- •12.8. Массоперенос в многокомпонентных системах
- •12.8.1. Уравнения массоотдачи
- •12.8.2. Уравнения массопередачи
- •12.8.3. Расчет аппаратов с непрерывным контактом фаз
- •12.8.4. Расчет аппаратов со ступенчатым контактом фаз
- •Контрольные вопросы к главе 7
- •Вопросы для обсуждения
12.2. Различные модификации уравнений массоотдачи и массопередачи
В разделе 4.4 было получено уравнение массопередачи (4.94), движущей силой в котором являлась разница химических потенциалов компонента в ядрах различных фаз. Расчет химических потенциалов представляет собой достаточно сложную задачу, о чем свидетельствует содержание предыдущего раздела. В связи с этим на практике обычно пользуются уравнениями массоотдачи и массопередачи, содержащими в качестве движущей силы разность концентраций компонента. При использовании интегральной формы уравнений массоотдачи и массопередачи (4.15), (4.109) зачастую большой проблемой является определение поверхности контакта фаз в реальном аппарате, так как она может складываться из поверхности струй, капель, пузырей, пены. В этом случае применяют модифицированные уравнения, не содержащие величину межфазной поверхности. Прежде чем приступить к выводам модифицированных уравнений массоотдачи и массопередачи получим некоторые потребующиеся при этом соотношения. Вначале рассматриваться будут двухкомпонентные смеси, а затем в разделе 12.8 – многокомпонентные.
12.2.1. Уравнения материального баланса, рабочих и равновесных линий массообменных процессов
Пусть в типичном цилиндрическом вертикальном аппарате для проведения массообменных процессов противотоком друг другу, в режиме идеального вытеснения, движутся две фазы I и II с расходами G и L, концентрацию распределяемого компонента в них обозначим y и x. Допустим, что концентрации могут изменяться только по высоте аппарата, являясь постоянными или средними для каждого поперечного сечения, т.е. упростим задачу до одномерной. Единицы измерения расходов лучше выбрать такими, чтобы G и L не изменялись по высоте аппарата (кг/с инертного компонента при абсорбции, кмоль/с смеси при ректификации и т.д.).
В стационарных условиях закон сохранения массы (вещества) для всего аппарата рис. 12.1 может быть записан в соответствии с (2.3) в виде уравнения материального баланса: суммарный приход массы (вещества) должен равняться расходу:
.
(12.65)
Рис.
12.1. Схема массообменного процесса в
вертикальном противоточном аппарате:
L,
G
расходы фаз; х,
y
концентрации распределяемого компонента
в фазах; индексы «н» и «к»
начальное и конечное состояния; I,
II
номера фаз; А
А
произвольное поперечное сечение аппарата
Можно записать материальный баланс по распределяемому компоненту при отсутствии химических реакций:
.
(12.66)
В случае постоянства расходов G, L=const уравнение (12.66) упрощается:
,
(12.67)
или для элементарного участка аппарата
.
(12.68)
Знак «минус» свидетельствует о противоположном изменении концентрации распределяемого компонента в фазах: если в одной фазе концентрация увеличивается, то в другой уменьшается.
Из
уравнения материального баланса можно
получить уравнение рабочей линии.
Запишем уравнение материального баланса
для участка аппарата от нижнего сечения
до некоторого текущего А
А (рис. 12.1) и
разрешим его относительно концентрации
распределяемого компонента в одной из
фаз:
,
(12.69)
.
(12.70)
Это уравнение называется уравнением рабочей линии противоточного массообменного процесса, связывающего рабочие концентрации распределяемого компонента в фазах для произвольного сечения аппарата. Под рабочими концентрациями понимают средние по сечению или неизменные в сечении аппарата концентрации ядра фазы. В случае постоянства расходов уравнение рабочей линии упрощается:
.
(12.71)
Это уравнение прямой линии можно представить в виде
,
где
,
.
(12.72)
Аналогичным образом может быть получено уравнение рабочей линии для прямоточного движения фаз:
,
(12.73)
,
(12.74)
,
(12.75)
,
где
,
.
(12.76)
Запишем уравнение равновесной линии, связывающее рабочую концентрацию распределяемого компонента в одной из фаз с его равновесной концентрацией в другой фазе. Под равновесной концентрацией в произвольном сечении аппарата понимают концентрацию компонента в фазе, находящейся в равновесии с другой, состав которой определяется рабочей концентрацией. Уравнение равновесной линии может быть записано в соответствии с (12.5):
,
(12.77)
где
равновесная концентрация в фазе I,
x
рабочая концентрация в фазе II,
m
коэффициент распределения. Способы
определения коэффициента распределения
рассмотрены в предшествующем разделе.
Величина m
может быть постоянной (для разбавленных
растворов), тогда равновесная линия
будет прямой, или зависеть от x,
тогда равновесная линия будет кривой.
Рис.
12.2. Рабочие (1 и 2) и равновесные линии на
xy
диаграмме: 1
противоточное и 2
прямоточное движение фаз
На
рис. 12.2 изображены рабочие и равновесные
линии, причем рабочая концентрация в
фазе I
превышает равновесную. При стремлении
системы к состоянию равновесия рабочая
концентрация в каждой из фаз сближается
с равновесной. Если рабочая концентрация
распределяемого компонента в фазе выше
равновесной, то он будет уходить из
данной фазы в другую, где его концентрация
ниже равновесной. В данном случае
распределяемый компонент будет переходить
из фазы I
в фазу II,
так как
.
В случае если рабочая концентрация
компонента равна равновесной, межфазный
перенос вещества отсутствует. Таким
образом, по взаимному расположению
рабочей и равновесной линий можно судить
об отсутствии или наличии процесса
массопередачи, а также о его направлении.
Можно также предположить, что величина
межфазного потока компонента будет
пропорциональна отклонению системы от
состояния равновесия, т.е. разнице
рабочей и равновесной концентраций.
Подтвердим данное предположение.