- •Оглавление
- •Глава 9. Теория систем массового обслуживания 98
- •Введение
- •Глава 1. Построение математической модели задачи линейного программирования
- •Задачи для самостоятельного решения
- •Глава 2. Графический метод решения задач линейного программирования
- •1. Изобразим на плоскости систему координат
- •2. Рассмотрим ограничения неотрицательности
- •3. Строим множество точек, соответствующее множеству решений системы ограничений.
- •Задачи для самостоятельного решения
- •Глава 3. Стандартная и каноническая формы задачи линейного программирования
- •Задачи для самостоятельного решения
- •Глава 4. Симплексный метод решения задач линейного программирования
- •4.1.Общая идея симплексного метода
- •4.2.Табличный симплексный метод
- •4.3. Метод искусственного базиса
- •Задачи для самостоятельного решения
- •Глава 5. Двойственная задача линейного программирования
- •Задачи для самостоятельного решения
- •Глава 6. Целочисленные задачи линейного программирования
- •Задачи для самостоятельного решения
- •Глава 7. Транспортная задача
- •Задачи для самостоятельного решения
- •Глава 8. Теория игр
- •8.1. Общие понятия
- •8.2. Решение игр в чистых стратегиях
- •8.3. Решения игр в смешанных стратегиях
- •8.3.1. Решение игры 2×2 в смешанных стратегиях
- •8.3.2. Решение игры 2×2 в смешанных стратегиях геометрическим методом
- •8.3.3. Решение игр вида 2×n и m×2 геометрическим методом
- •8.4. Решение матричной игры m×n симплексным методом
- •Задачи для самостоятельного решения
- •Глава 9. Теория систем массового обслуживания
- •9.1. Компоненты и классификация моделей массового обслуживания
- •9.2. Определение характеристик одноканальных систем массового обслуживания
- •9.2.1. Одноканальная смо с отказами
- •9.2.2. Одноканальная смо с ожиданием и ограниченной длиной очереди
- •9.2.3. Одноканальная смо с ожиданием без ограниченной длины очереди
- •9.3. Определение характеристик многоканальных систем массового обслуживания
- •9.3.1. Многоканальная система массового обслуживания с отказами
- •9.3.2 Многоканальная система массового обслуживания с ожиданием и неограниченной очередью
- •9.4. Модель замкнутой системы массового обслуживания
- •Задачи для самостоятельного решения
- •Список литературы
8.3.2. Решение игры 2×2 в смешанных стратегиях геометрическим методом
Пусть игра задана
платежной матрицей
.
По оси абсцисс отложим единичный отрезок
А1 А2, где
точка А1 (0, 0) изображает
стратегию А1, А2
(1, 0) – стратегию А2, а каждая
промежуточная точка SA
этого отрезка изображает смешанную
стратегию первого игрока P = (p1,
p2), где p1– расстояние от
точки SA до A2, p2–расстояние
от точки A1до SA. Выигрыш
игрока A будем откладывать на
вертикальных отрезках (рис.1).
Случай 1. Если игрок B применит стратегию В1, то выигрыш игрока A при стратегии А1 равен а11, поэтому на оси ординат отложим отрезок А1В1 = а11. При применении игроком A стратегии А2 выигрыш равен а21, отложим этот отрезок на перпендикуляре из точки А2, обозначим полученную точку В1'. Ордината любой точки М1 отрезка В1В1′ равна среднему выигрышу игрока A при применении смешанной стратегии SA (действительно, этот выигрыш равен математическому ожиданию случайной величины, т.е. a11p1 + a21p2). Запишем уравнение прямой В1В1′:
,
т. е.
,
тогда при x = p2
получим
.
Рис.1. Геометрическое изображение игры 2х2, относительно игрока А
Случай 2. Если игрок B применяет стратегию В2, то аналогично откладываем отрезки а12 и а22 и получаем отрезок В2В2′. Ордината любой точки М2 отрезка В2В2′ – выигрыш игрока A, если A применяет смешанную стратегию SA, а B – стратегию В2.
Запишем уравнение прямой В2В2′:
,
тогда при x = p2 получим
.
Построим нижнюю границу выигрыша игрока А – ломаную В1 NВ2′. Ординаты точек этой ломаной показывают минимальные выигрыши игрока А при использовании им любой смешанной стратегии. Оптимальное решение игры определяет точка N, в которой выигрыш игрока А принимает наибольшее значение. Ордината точки N равна цене игры.
Для ее нахождения необходимо решить систему двух уравнений прямой В1В1′ и прямой В2В2′.
Проекция этой точки на ось ОХ показывает оптимальную стратегию (р1, р2).
Аналогично находится оптимальная стратегия Q = (q1 , q2) игрока B, только в соответствии с принципом минимакса надо находить верхнюю границу выигрыша, т. е. строить ломаную А2NА1′ и брать точку N с наименьшей ординатой.
Абсцисса точки N определяет оптимальную стратегию игрока B, т. е. Q = (q1 , q2).
Рис.2. Геометрическое изображение игры 2х2, относительно игрока B
Пример№8
Решить игру,
заданную платежной матрицей
,
графоаналитическим способом.
Решение:
Нижняя цена игры α = 1,5, верхняя цена игры β = 2. Так как, α≠β, то седловой точки нет. Строим геометрическое изображение игры, относительно игрока А.
Так как a11 = 1,5, a21 = 2 строим точки B1(0;1,5) и B2(1;2), соединяем их отрезком. Так как a21 = 3, a22 = 1 строим точки B2(0;3) и B2’(1;1), соединяем их отрезком.
Рис.3. Геометрическое изображение игры 2х2, относительно игрока А
Уравнение прямой В1В1′:
,
т. е. y = 0,5x + 1,5;
уравнение В2В2′:
,
т. е. y = 3-2x.
Найдем точку N пересечения прямых В1В1′ и В2В2′, для чего решим систему уравнений:
0,5x + 1,5=3-2x;
2,5х=1,5; х=0,6; у=1,8,
т. е. N(0,6; 1,8),
откуда p2= 0,6; p1= 0,4; γ = 1,8 – цена игры.
Аналогично строим точки А1(0; 1,5) и А1′(1;3), А2(0; 2) и А2′(1; 1) и находим точку M пересечения прямых А1А1′ и А2А2′.
Рис.4. Геометрическое изображение игры 2х2, относительно игрока B
Ответ: смешанная стратегия игрока А: PA= (0,4; 0,6), игрока В: QB = (0,8; 0,2); цена игры 1,8.
