Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мат.Анализ.лекция 1.doc
Скачиваний:
14
Добавлен:
10.11.2019
Размер:
1.82 Mб
Скачать

Соответствия между множествами. Взаимно однозначные соответствия.

Основным объектом математического анализа является «функция». Введем это понятие через понятие «соответствие».

Пусть заданы два множества X и Y. Если для каждого элемента аХ указан (один, или несколько, или ни одного) элемент bY, с которым сопоставляется а, то говорят, что между множествами X и Y установлено соответствие (бинарное отношение).

В основе понятия «соответствия» лежит «упорядоченная пара» (короче «пара»).

Определение 1.5. Упорядоченной парой называется множество, состоящее из двух элементов, для которых указан порядок следования. Обозначают (х;у); элемент х называют первой компонентой (координатой), увторой компонентой (координатой) пары.

Основное свойство пары: две пары равны равны соответственно их компоненты, т.е. (х1; у1)=( х2; у2) х1= х2, у12.

Не следует путать множество {х;у} и пару (х;у): (х;у) (у;х), а {х;у}={у;х}.

Определение 1.6. Упорядоченной тройкой (тройкой) называется пара ((х;у), z), первая координата которой – пара (х;у), а вторая – z . Обозначают (х;у; z).

Аналогично определяются упорядоченные четвёрки, пятёрка, и т. д. n-ки.

Определение 1.7. Декартовым (прямым) произведением множеств Х и Y называется множество, состоящее из всех возможных пар (х;у), где , и обозначают .

C помощью символов это определение можно записать так:

= {(х;у)| , }

Пример 1.1.

Пусть Х = {1, 2, 3}, Y = {k, l}. Найти Х ´ Y и YХ.

Решение. Декартовое произведение Х ´ Y состоит из шести элементов:

ХY = (1, k), (2, k), (3, k), (1, l), (2, l), (3, l).

Выпишем теперь декартовое произведение

YХ = (k, 1), (k, 2), (k, 3), (l, 1), (l, 2), (l, 3).

Таким образом, Х ´ YYХ (не выполняется ассоциативный закон). Результат декартового произведения зависит от порядка сомножителей.

Принято считать, что для любого множества Х справедливы равенства:

  • ;

  • .

Множество называется декартовым квадратом.

Если множества X и Y  – числовые, то пары элементов (xy) можно рассматривать как координаты точек на плоскости. В этом случае декартово произведение можно изобразить в декартовой системе координат.

Определение 1.8. Любое подмножество декартового произведения множеств называется соответствием между множествами Х и Y или отношением между элементами множеств Х и Y .

Будем обозначать соответствия маленькими буквами латинского f, g,.. и греческого φ, ψ… алфавитов. Множество всех первых компонент пар из соответствия f называют областью определения соответствия f, а множество всех вторых компонент пар из соответствия f называют областью значения соответствия f, и обозначают, соответственно D(f) и E(f).

Пусть f соответствие между множествами Х и Y. Если , то говорят, что «при соответствии f элемент x соответствует элементу y». В этом случае элемент у называется образом элемента х, а элемент xпрообразом элемента y при соответствии f.

Пример 1.2. Между элементами множеств X = {2, 3, 5, 11} и Y = {6, 7, 9, 10} задано соответствие f : «число x является делителем числа y».

Очевидно, что множество f ={(2, 6), (2, 10), (3, 6), (3, 9), (5, 10)} – пар элементов, находящихся в заданном отношении, является подмножеством декартова произведения множеств

XY = {(2, 6), (2, 7), (2, 9), (2, 10), (3, 6), (3, 7), (3, 9), (3, 10), (5, 6),  (5, 7),  (5, 9), (5, 10), (11, 6), (11, 7), (11, 9), (11, 10)}.

Полным образом элемента a из множества X называется множество всех элементов из Y, которые соответствуют элементу а. Обозначают f(а). В частности, для примера 1

f(2)={6, 10}, f(3)={6, 9}, f(5)={10}, f(11)=  .

Полным прообразом элемента b из множества Y называется множество всех элементов из Х, которым b соответствует. Обозначают f –1(b). В частности, для примера 1.2

f –1 (6)={2, 3}, f –1 (7)= , f –1 (9)={3}, f –1 (10)= {2, 5} .

Множество всех элементов из X, имеющих непустые образы, называется множеством (областью) определения соответствия, и обозначают D(f), а множество всех элементов из Y, имеющих непустые прообразы – множеством (областью) значений соответствия и обозначают Е(f). Так, в примере 1.2 область определения соответствия f есть множество D(f) ={2, 3, 5}, а множество значений соответствия f есть множество Е(f) = {6, 9, 10}.

Если множества X и Y совпадают, то говорят об отношении между элементами множества X.

Замечание 1.1. Соответствие между множествами можно задавать

а) перечислением пар

Y

X

6

7

9

10

2

3

5

11

б) таблицей

в) графами

г) с помощью графика (если множества числовые)

Соответствия могут быть различных видов. Приступим к их изучению.

Пусть f соответствие между элементами множеств X и Y. Соответствие f называется всюду определенным, если множество D(f) = Х. Если E(f) = Y. Если же E(f) = Y, то соответствие называют сюръективным. На рис. 5 а и 5 б представлено всюду определенное сюръективное соответствие. Соответствия, представленные на рис. 5 в и 5 г, не сюръективны, а соответствие, изображенное на рис. 5 г, не всюду определенное.

Рис. 5

Соответствие называется инъективным, если любой элемент из E(f) соответствует единственному элементу из D(f). На рис. 5 а изображено инъективное соответствие.

Особое место занимают функциональные соответствия.

Определение 1.9. Соответствие f между множествами Х и Y, при котором каждому соответствует один и только один называется функциональным (функцией). Элемент называется аргументом функции f, а соответствующий ему элемент называется значением функции f в точке х.

Определение 1.10. Если область определения функции f состоит из некоторого множества действительных чисел, то f называется функцией одной действительной переменной. Если область определения функции f состоит из упорядоченных n-ок действительных чисел, то f называется функцией n действительных переменных. Если область значений функции f состоит из некоторого множества действительных чисел, то f называется действительной функцией.

Пример 1.3. Среди соответствий, изображенных на рис. 6, функциями будут f и p. Их областями определения будут, соответственно, D(f) = {a, b, c}, D(p) = {a, b, c}, а множествами значений E(f) = {1, 3}, E(p) = {1, 2, 3}.

Если , и f – функциональное соответствие между элементами x и y, то это записывают так: y = f(x) или или

Рис. 6

Определение 1.7. Соответствие между элементами множеств Х и Y, при котором каждому элементу множества Х соответствует единственный элемент множества Y, и каждый элемент множества Y соответствует только одному элементу из множества Х, называется взаимно однозначным (или биективным).

Определение 1.8. Множества Х и Y называются эквивалентными, или равномощными, если между ними каким-либо способом можно установить взаимно однозначное соответствие.

Эквивалентность двух множеств обозначается так: XY.

Пусть задано соответствие f между множествами X и Y. Обратным ему называется соответствие f –1между множествами Y и X, состоящее из таких пар (у; х), для которых верно, что (х; у) f. Соответствия f и f –1 называют взаимно обратными.