Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
58
Добавлен:
02.05.2014
Размер:
458.75 Кб
Скачать

20.Векторные файлы

Это те файлы, в которых содержится математическое описание всех элементов изображения //(отдельных элементов) , ??? использованные программы визуализации для конструирования конечного изображения. ВФ строится не из пиксельных значений, а из описания элементов изображения.//

Векторные данные могут включать в себя данные о типе линии и некоторые соглашения относительно того, как они будут вычерчиваться (её атрибутах). Линии используются для построения геометрических фигур, т.е. в свою очередь может быть использованы для создания объекта 3D фигур. Векторные данные представляют собой список операций черчения и математическое описание элементов изображения, записанные в файле в той последовательности, в которой они создавались.

Векторные форматы отличаются друг от друга в большей степени, чем растровые.

Векторные данные гораздо менее объемные, чем растровые (за исключением фотографий).

Простейшие векторные форматы используются текстовыми редакторами и электронными таблицами. Большинство векторных форматов разработаны для хранения чертежей и рисунков, созданных программами САПР (AutoCad, Компас).

40. Пакеты вертикального повторения для rle схем.

Используется для повышения эффективного сжатия за счёт повторения одинаковых строк развёртки. Этот пакет не хранит реальных дан. строк развёртки. Он лишь указывает на необходимость повторить предыдущую строку. Варианты пакетов:

1) пакет вертикального повторения занимает 1 байт; в т. сл. в этот байт записывается 0-ое значение, что указывает на необходимость повторить строку ещё раз

/0/0/0/0/0/0/0/0/0/… - 99 раз повтор.

2) состоит из 2х байтов; в т.сл. в 1-ый байт запис-ся счётчик=0, во 2-знач. повторяющихся строк развёртки

/0 98 / - 99 раз повторяем строку

1. История развития компьютерной графики 2. История развития графической сис-мы пк

Компьютеры использовались только для решения научных и производственных задач, результатами которых являлись только числовые данные. Для того, чтобы понять эти данные в графики и диаграммы преобразовывались вручную.

К 60-м годам появились более мощные компьютеры  возможность обработки графических данных в режиме символьной печати. Затем появились специальные устройства для графического вывода на бумагу – графопостроители или перьевые плоттеры. Для управления работой графопостроителя стали создавать специальное программное обеспечение. Далее появились графические дисплеи, которые формируют рисунок из множества точек, выстроенных в равные ряды (строки), образующие графическую сетку или растор.

Графическая схема ПК:

ЦП

ОП(CRAM)

Другие устр-ва

Сист. шина

Монитор

Видеоадаптер

Диспл. Проц

Видеоадаптер

Мониторы, работающие по принципу построчного сканирования, называется растровыми. Плата ком-па, обеспечивающая формирование видеосигнала и тем самым определяющая изображение называется видеоплатой (видеоадаптер, видеокарта). Основные части – видеопамять и дисплейный процессор. Выводимое изображение формируется в видеопамяти. Д. п. читает содержимое видеопамяти и управляет работой монитора. К видеопамяти имеют доступ 2-а процессора: центральный и дисплейный. ЦП записывает видеоинформацию, а дисплейный периодически читает её (50-100 раз/с) и передает на монитор. В видеопамяти хранится последовательность кодов, определяющих цвет каждой точки. Видеоадаптеры могут работать в различных режимах: 1) текстовый 2) графический. В текстовом – экран монитора условно разбивается на отдельные участки, так называемые знакоместа (25 строк по 80 символов) в каждое знакоместо может быть выведен 1 из 256 символов по таблице АСКИ-кодов. В графическом режиме информация отображается в виде прямоугольной сетки точек, цвет каждой из которых задаётся программой. 1-й комп IBM PC, выпущенный в 1981 году, был оснащен видеоадаптером MDA, видеосистема была предназначена для работы только в текстовом режиме, но уже через год появился видеоадаптер «Геркулес» который поддерживал графический видеорежим черно-белый, с размером растры 720 на 348. Следующий шаг – адаптер CGA – 1-я цветная модель, позволила работать в цветном текстовом и графическом режимах (1) черно-белый 640-200; 2) цветной 320-200)

В 1984 году появился видеоадаптер EGA с 16-ти цветным графическим видеорежимом размером 640-350 пикселей. В 1987 году появились MCGA и VGA, обеспечивающие 256-цветный видеорежим, из них VGA - наиболее популярен, т.к. наиболее реалистично отображал черно-белое фото. VGA – 320*200. Видеоадаптер VGA имеет 16-ти цветной видеорежим 640-480, что соответствует нормальному изображению. Затем появились видеоадаптеры обеспечивающие видеорежимы:

Super VGA: 800*600, 1024*768 – при 16-цветах

640*480 – при 256 цветах

1-й достигла глубины цвета в 24 бита фирма Targa, Видеоадаптер Targa 24 (1995г) – 24бита/пиксель – начало профессиональной комп. графики.

В настоящее время на компах IBM PC с проц. Pentium используется огромное количество видеоадаптеров позволяющих установить глубину цвета 32 бита/пиксель при 1600*2000.

Параметры отображения обуславливаются не только моделью видеоадаптера, но и объемом установленной видеопамяти. В видеопамяти могут храниться несколько кадров изображения, что используется в анимации, для их сохранения используются отдельные страницы видеопамяти с одинаковой логической организацией, но разной адресацией. Обмен данными по системной шине обеспечивают процессор, видеоадаптер и контроллер локальной шины. До недавнего времени для подключения видеоадаптеров использовалась локальная шина PCI, кот. является стандартом для подключения модемов, сетевых контроллеров и контроллерных интерфейсов. В настоящее время видеоадаптеры подключаются через локальную шину AGP, наличие AGP-порта повышает быстродействие компа за счет уменьшения нагрузки на шину PCI. Кроме видеопамяти на плате видеоадаптера располагается дисплейный процессор, который по сложности уже приближается к ЦП. Этот графич. диспл. проц. кроме визуализации содержимого видеопамяти выполняет следующие функции:

Рисование массивов пикселов, манипуляции с цветами; копирование массивов пикселов, наложение текстур и т.д. Ранее эти функции выполнялись ЦП, а графический процессор использовался лишь для рисования линий, полигонов и т.д. Видеоадаптер выполняет эти функции аппаратно, что позволяет намного ускорить их в сравнении с прогр. реализацией данных в ЦП.

Наиболее известными графическими интерфейсами являются API, OpenGL, DirectX.