Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ShPOR_FINAL_v2_0.doc
Скачиваний:
7
Добавлен:
25.09.2019
Размер:
2.72 Mб
Скачать

39. Фотоэлектронная спектроскопия( фэс). Работа выхода

Фотоэлектронная спектроскопия, метод изучения строения вещества, основанный на измерении энергетических спектров электронов, вылетающих при фотоэлектронной эмиссии.

Согласно закону Эйнштейна, сумма энергии связи вылетающего электрона (работы выхода) и его кинетическая энергии равна энергии падающего фотона hω (h – Планка постоянная, ω – частота падающего излучения). По спектру электронов можно определить энергии связи электронов и их уровни энергии в исследуемом веществе. В Ф. с. применяются монохроматическое рентгеновское или ультрафиолетовое излучения с энергией фотонов от десятков тысяч до десятков эв (что соответствует длинам волн излучения от десятых долей до сотен ). Спектр фотоэлектронов исследуют при помощи электронных спектрометров высокого разрешения (достигнуто разрешение до десятых долей эв в рентгеновской области и до сотых долей эв в ультрафиолетовой области). Метод Ф. с. применим к веществу в газообразном, жидком и твёрдом состояниях и позволяет исследовать как внешние, так и внутренние электронные оболочки атомов и молекул, уровни энергии электронов в твёрдом теле (в частности, распределение электронов в зоне проводимости). Для молекул энергии связи электронов во внутренних оболочках образующих их атомов зависят от типа химической связи (химические сдвиги), поэтому Ф. с. успешно применяется в аналитической химии для определения состава вещества и в физической химии для исследования химической связи. В химии метод Ф. с. известен под название ЭСХА – электронная спектроскопия для химического анализа.

Работа выхода (Work function) — минимальная энергия (обычно измеряемая в электрон-вольтах), которую необходимо затратить для «непосредственного» удаления электрона из объема твёрдого тела. Здесь «непосредственность» означает то, что электрон удаляется из твердого тела через данную поверхность и перемещается в точку, которая расположена достаточно далеко от поверхности по атомным масштабам (чтобы электрон прошел весь двойной слой), но достаточно близко по сравнению с размерами макроскопических граней кристалла. При этом пренебрегают дополнительной работой, которую необходимо затратить на преодоление внешних полей, возникающих из-за перераспределения поверхностных зарядов. Таким образом, работа выхода для одного и того же вещества для различных кристаллографических ориентаций поверхности оказывается различной.

При удалении электрона на бесконечность его взаим-вие с зарядами, остающимися внутри твёрдого тела приводит к индуцированию макроскопических поверхностных зарядов (при рассмотрении полубесконечного образца в электростатике это называют «изображением заряда»). При перемещении электрона в поле индуцированного заряда совершается дополнительная работа, которая определяется диэлектрической проницаемостью вещества, геометрией образца и свойствами других поверхностей. За счет этого полная работа по перемещению электрона из любой точки образца в любую другую точку (в т.ч. и точку бесконечности) не зависит от пути перемещения, т.е. от того, через какую поверхность был удален электрон. Поэтому в физике твердого тела эта работа не учитывается и не входит в работу выхода.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]