Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ShPOR_FINAL_v2_0.doc
Скачиваний:
7
Добавлен:
25.09.2019
Размер:
2.72 Mб
Скачать

36. Сверхпроводимость и сверхтекучесть.

Сверхтекучесть и сверхпроводимость с точки зрения новой физики имеют одну и ту же причину - утрату частицами момента количества движения по виткам винтовой траектории.

В первом случае - это потеря момента атомами гелия, а во втором - электронами ( = 0). Вся проблема в том, кому передать этот момент.

Атомы гелия передают его атомам стенок сосуда, в котором находится жидкий гелий, поэтому наблюдается фазовый переход второго рода, и в жидком гелии находятся как бы две жидкости, у которых движение атомов принципиально различно. В гелии I они движутся по отрезкам винтовых линий, а в гелии II - по прямой. . Переход жидкого гелия в сверхтекучее состояние не сопровождается тепловым эффектом. Однако, поскольку гелий в состоянии сверхтекучести представляет собой смесь "холодной" (с отсутствием у атомов момента импульса) и "горячей" (с сохранившимся у атомов моментом импульса) жидкости, то наблюдается механокалорический эффект. При переходе гелия в сверхтекучее состояние, его теплопроводность увеличивается, примерно, в 106 раз и механизм теплопроводности отличается от обычного по многим признакам.

получить эффект сверхтекучести при нормальных температурах невозможно, т.к. потенциальные приемники момента импульса не столько отбирают его у атомов, сколько награждают им. По-видимому, только пропусканием атомов сквозь каналы, поперечник которых заведомо меньше диаметра винтовой траектории можно добиться каких-то успехов. То же касается и сверхпроводимости в случае движения заряженных частиц. Для объяснения сверхтекучести 3He официальная физика прибегает к образованию куперовских пар уже из атомов 3He, считая их фермионами. Очевидно, что при образовании куперовских пар система в целом переходит в более выгодное энергетическое состояние и этот процесс должен сопровождаться выделением тепла. Электроны передают свой момент  дефектам кристаллической решетки или атомам “примеси”, а также атомам основной кристаллической решетки, если больше нет ничего подходящего. Поэтому температура перехода в сверхпроводящее состояние монокристаллов чистых элементов очень мала.

СВЕРХПРОВОДИМОСТЬ физическое явление, наблюдаемое у некоторых веществ (сверхпроводников) при охлаждении их ниже определенной критической температуры Тк и состоящее в обращении в нуль электрического сопротивления постоянному току и в выталкивании магнитного поля из объема образца (Мейснера эффект). Сверхпроводимость открыта Х. Камерлинг-Оннесом (1911) в Hg. Теория создана в 1967. Переход в сверхпроводящее состояние связан с образованием куперовских пар электронов (см. Купера эффект). Механизм сверхпроводимости у т.н. высокотемпературных сверхпроводников (с Тк 100К) пока неизвестен.

СВЕРХТЕКУЧЕСТЬ свойство квантовой жидкости (4Не и 3Не) протекать без внутреннего трения (вязкости) через узкие щели, капилляры и т.п. Сверхтекучесть 4He (при температурах ниже Тк = 1,17 К) была открыта в 1938 П. Л. Капицей, сверхтекучесть 3Не (ниже 2,6 ?10-3К) - в 1974 группой американских физиков. Сверхтекучесть связана с переходом части атомов жидкости (при Т?Тк) в состояние с нулевым импульсом (см. Бозе - Эйнштейна конденсация). Эти атомы образуют сверхтекучую компоненту.

Сверхпроводники позволят создать сверхмощные магниты, не требующие электрического питания, сверхчувствительные сенсоры, электронику, не нуждающуюся в охлаждении и многое другое. Кстати, в отличие от Шредингерова кота, электрический ток в сверхпроводнике вполне подчиняется квантовым законам суперпозиции различных состояний: ученым удалось создать замкнутое кольцо, по которому ток одновременно течет и по часовой, и против часовой стрелки!

При понижении температуры многие металлы и сплавы переходят в сверхпроводящее состояние. Этот переход происходит при определенной для каждого материала температуре, называемой критической. Однако практическое использование замечательных свойств сверхпроводников тормозится их потребностью в сверхнизких температурах и, соответственно, громоздких криогенных установках. Исследования в области на-номатериалов позволили создать специальные вещества (нано-керамику, нанотрубки и т.п.), которые являются сверхпроводниками при сравнительно высоких температурах. Широкое распространение высокотемпературных сверхпроводников приведет к огромной экономии электроэнергии, уменьшению и удешевлению всех электрических устройств.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]