- •1. Предмет и содержание тм. Статика, предмет и задачи статики. Основные понятия статики. Аксиомы статики.
- •2. Связи и реакции связей. Аксиома связей – основной принцип решения задач статики.
- •3. Теорема о равновесии 3-х непараллельных сил.
- •4. Геометрический и аналитический способы задания силы. Проекция силы на ось и на плоскость. Способ двойного проецирования силы.
- •Геометрический и аналитический способы сложения сил.
- •6. Сходящаяся система сил. Равнодействующая системы сходящихся сил.
- •7. Геометрические и аналитические условия равновесия системы сходящихся сил.
- •Момент силы относительно центра как мера вращательного действия силы. Алгебраический момент силы относительно центра.
- •Теорема об эквивалентности пар в пространстве.
- •Теорема о сложении пар в пространстве.
- •Условия равновесия системы пар на плоскости и в пространстве.
- •Лемма о параллельном переносе силы (лемма Пуансо).
- •П риведение произвольной плоской системы сил к центру. Главный вектор и главный момент произвольной плоской системы сил.
- •Частные случаи приведения произвольной плоской системы сил к простейшему виду.
- •Уравнения равновесия произвольной плоской системы сил в трех формах.
- •Частный случай плоской системы параллельных сил.
- •Сосредоточенные силы и распределенные нагрузки. Жесткая заделка.
- •Реакция заделки.
- •Равновесие системы тел. Определение реакций внешних и внутренних связей.
- •Трение скольжения. Законы трения. Коэффициент, угол, конус трения. Область равновесия.
- •Трение качения, коэффициент трения качения.
- •Задачи расчета ферм. Аналитические способы определения усилий в стержнях ферм (способ вырезания узлов, способ сечений).
- •Момент силы относительно оси. Зависимость между моментами силы относительно оси и относительно центра, лежащего на этой оси.
- •Момент силы относительно центра как вектор. Векторная формула для нахождения момента силы.
- •Приведение произвольной пространственной системы сил к центру (теорема Пуансо). Главный вектор и главный момент произвольной пространственной системы сил.
- •Инварианты произвольной пространственной системы сил.
- •Частные случаи приведения произвольной пространственной системы сил к центру.
- •Условия и уравнения равновесия произвольной пространственной системы сил. Частный случай пространственной системы параллельных сил.
- •Центр параллельных сил и его координаты.
- •Центр тяжести тела и его координаты. Способы определения положения центра тяжести.
- •Центр тяжести однородных тел. Центр тяжести объема, поверхности, линии. Примеры (центр тяжести треугольника, дуги окружности, кругового сектора).
- •Предмет и содержание кинематики. Основные понятия и задачи кинематики.
- •1. Векторный способ задания движения точки.
- •2. Координатный способ задания движения точки.
- •Естественный способ задания движения точки.
- •Определение траектории, скорости и ускорения точки при координатном способе задания движения.
- •Естественный трехгранник и естественные оси. Кривизна траектории.
- •Скорость и ускорение точки при естественном способе задания движения. Нормальное и касательное ускорения.
- •Равномерное и равнопеременное движение точки. Равномерное движение
- •Равнопеременное движение
- •Задание движения твердого тела. Поступательное движение твердого тела. Теорема о траекториях, скоростях и ускорениях точек тела при поступательном движении.
- •Вращательное движение тела вокруг неподвижной оси. Уравнение вращения. Угловая скорость и угловое ускорение. Векторное представление угловой скорости и углового ускорения.
- •Сложное движение точки. Теорема о сложении скоростей при сложном движении точки.
- •Сложное движение точки. Теорема о сложении ускорений при сложном движении точки.
- •Ускорение Кориолиса. Случай равенства нулю кориолисова ускорения.
- •Мгновенная ось вращения. Векторы угловой скорости и углового ускорения. Скорость произвольной точки тела (без доказательства).
- •Общий случай движения тела. Скорость и ускорение произвольной точки тела в общем случае (без доказательства).
- •Сложное (составное) движение твердого тела. Сложение поступательных движений.
- •Сложение мгновенных вращений твердого тела вокруг пересекающихся и параллельных осей.
- •Пара мгновенных вращений. Кинематический винт. Мгновенная винтовая ось.
Задачи расчета ферм. Аналитические способы определения усилий в стержнях ферм (способ вырезания узлов, способ сечений).
Фермой называется жесткая конструкция из прямолинейных стержней, соединенных на концах шарнирами. Если все стержни фермы лежат в одной плоскости, ферму называют плоской.
Места соединения стержней фермы называют узлами. Все внешние нагрузки к ферме прикладываются только в узлах.
Рассмотрим жестких плоских ферм без лишних стержней, образованных из треугольников. В таких фермах число стержней k и число узлов п связаны соотношением k=2n-3.
Метод вырезания узлов. Этим методом удобно пользоваться, когда надо найти усилия во всех стержнях фермы. Он сводится к последовательному рассмотрению условий равновесия сил, сходящихся в каждом из узлов.
Равновесие всей конструкции в целом
Равновесие каждого узла в отдельности
Метод сечений (метод Риттера). Этим методом удобно пользоваться для определения усилий в отдельных стержнях фермы, в частности для проверочных расчетов. Идея метода состоит в том, что ферму разделяют на две части сечением, проходящим через три стержня, в которых (или в одном из которых) требуется определить усилия, и рассматривают равновесие одной из этих частей. Действие отброшенной части заменяют соответствующими силами, направляя их вдоль разрезанных стержней от узлов, т. е. считая стержни растянутыми (как и в методе вырезания узлов). Затем составляют уравнения равновесия, беря центры моментов (или ось проекций) так, чтобы в каждое уравнение вошло только одно неизвестное усилие.
Момент силы относительно оси. Зависимость между моментами силы относительно оси и относительно центра, лежащего на этой оси.
К
твердому телу в точке А приложена сила
.
Проведем в пространстве ось (например
z). На оси z произвольно выберем точку
О . Соединим точку О с точкой А
радиус-вектором. Через точку О проведем
плоскость П перпенди-кулярную оси z.
Спроекти-руем вектора
и
на плоскость П .
Моментом силы относительно оси называется вектор равный моменту проекции силы на плоскость П относительно точки О пересечения оси z с плоскостью П.
Рис. 3-3
Свойства момента силы относительно оси:
Момент силы относительно оси равен нулю, если сила параллельна оси. В этом случае равна нулю проекция силы на плоскость, перпендикулярную оси.
Момент силы относительно оси равен нулю, если линия действия силы пересекается с осью. В этом случае равно нулю плечо силы.
Момент силы относительно оси равен проекции на эту ось момента силы относительно любой точки на оси
Момент силы относительно центра как вектор. Векторная формула для нахождения момента силы.
Моментом силы
относительно точки О называется вектор
,
приложенный в этой точке и равный
векторному произведению радиус-вектора
,
соединяющего эту точку с точкой приложения
силы, на вектор силы
.
Модуль вектора
равен произведению модуля силы
на ее плечо
.
Момент силы относительно точки О направлен перпендикулярно плоскости, в которой лежат сила и моментная точка (радиус-вектор), в том направлении откуда видно стремление силы вращать тело против движения часовой стрелки.4
Момент силы относительно точки не меняется от переноса силы вдоль линии ее действия.
Момент силы равен нулю, если линия действия силы проходит через моментную точку.
Если
сила
задана своими проекциями
на оси координат и даны координаты
точки приложения этой силы, то момент
силы относительно начала координат
вычисляется следующим образом:
Проекции момента на оси координат равны:
