Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamenatsionnye_voprosy_1.doc
Скачиваний:
64
Добавлен:
24.09.2019
Размер:
27.51 Mб
Скачать
  1. Задачи расчета ферм. Аналитические способы определения усилий в стержнях ферм (способ вырезания узлов, способ сечений).

Фермой называется жесткая конструкция из прямолинейных стержней, соединенных на концах шарнирами. Если все стержни фермы лежат в одной плоскости, ферму называют плоской.

Места соединения стержней фермы называют узлами. Все внешние нагрузки к ферме прикладываются только в узлах.

Рассмотрим жестких плоских ферм без лишних стержней, образованных из треугольников. В таких фермах число стержней k и число узлов п связаны соотношением k=2n-3.

Метод вырезания узлов. Этим методом удобно пользоваться, когда надо найти усилия во всех стержнях фермы. Он сводится к последовательному рассмотрению условий равновесия сил, сходящихся в каждом из узлов.

  1. Равновесие всей конструкции в целом

  2. Равновесие каждого узла в отдельности

Метод сечений (метод Риттера). Этим методом удобно пользоваться для определения усилий в отдельных стержнях фермы, в частности для проверочных расчетов. Идея метода состоит в том, что ферму разделяют на две части сечением, проходящим через три стержня, в которых (или в одном из которых) требуется определить усилия, и рассматривают равновесие одной из этих частей. Действие отброшенной части заменяют соответствующими силами, направляя их вдоль разрезанных стержней от узлов, т. е. считая стержни растянутыми (как и в методе вырезания узлов). Затем составляют уравнения равновесия, беря центры моментов (или ось проекций) так, чтобы в каждое уравнение вошло только одно неизвестное усилие.

  1. Момент силы относительно оси. Зависимость между моментами силы относительно оси и относительно центра, лежащего на этой оси.

К твердому телу в точке А приложена сила . Проведем в пространстве ось (например z). На оси z произвольно выберем точку О . Соединим точку О с точкой А радиус-вектором. Через точку О проведем плоскость П перпенди-кулярную оси z. Спроекти-руем вектора и на плоскость П .

Моментом силы относительно оси называется вектор равный моменту проекции силы на плоскость П относительно точки О пересечения оси z с плоскостью П.

Рис. 3-3

Свойства момента силы относительно оси:

  1. Момент силы относительно оси равен нулю, если сила параллельна оси. В этом случае равна нулю проекция силы на плоскость, перпендикулярную оси.

  2. Момент силы относительно оси равен нулю, если линия действия силы пересекается с осью. В этом случае равно нулю плечо силы.

Момент силы относительно оси равен проекции на эту ось момента силы относительно любой точки на оси

  1. Момент силы относительно центра как вектор. Векторная формула для нахождения момента силы.

Моментом силы относительно точки О называется вектор , приложенный в этой точке и равный векторному произведению радиус-вектора , соединяющего эту точку с точкой приложения силы, на вектор силы .

Модуль вектора равен произведению модуля силы на ее плечо .

Момент силы относительно точки О направлен перпендикулярно плоскости, в которой лежат сила и моментная точка (радиус-вектор), в том направлении откуда видно стремление силы вращать тело против движения часовой стрелки.4

Момент силы относительно точки не меняется от переноса силы вдоль линии ее действия.

Момент силы равен нулю, если линия действия силы проходит через моментную точку.

Если сила задана своими проекциями на оси координат и даны координаты точки приложения этой силы, то момент силы относительно начала координат вычисляется следующим образом:

Проекции момента на оси координат равны:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]