
- •1. Предмет и содержание тм. Статика, предмет и задачи статики. Основные понятия статики. Аксиомы статики.
- •2. Связи и реакции связей. Аксиома связей – основной принцип решения задач статики.
- •3. Теорема о равновесии 3-х непараллельных сил.
- •4. Геометрический и аналитический способы задания силы. Проекция силы на ось и на плоскость. Способ двойного проецирования силы.
- •Геометрический и аналитический способы сложения сил.
- •6. Сходящаяся система сил. Равнодействующая системы сходящихся сил.
- •7. Геометрические и аналитические условия равновесия системы сходящихся сил.
- •Момент силы относительно центра как мера вращательного действия силы. Алгебраический момент силы относительно центра.
- •Теорема об эквивалентности пар в пространстве.
- •Теорема о сложении пар в пространстве.
- •Условия равновесия системы пар на плоскости и в пространстве.
- •Лемма о параллельном переносе силы (лемма Пуансо).
- •П риведение произвольной плоской системы сил к центру. Главный вектор и главный момент произвольной плоской системы сил.
- •Частные случаи приведения произвольной плоской системы сил к простейшему виду.
- •Уравнения равновесия произвольной плоской системы сил в трех формах.
- •Частный случай плоской системы параллельных сил.
- •Сосредоточенные силы и распределенные нагрузки. Жесткая заделка.
- •Реакция заделки.
- •Равновесие системы тел. Определение реакций внешних и внутренних связей.
- •Трение скольжения. Законы трения. Коэффициент, угол, конус трения. Область равновесия.
- •Трение качения, коэффициент трения качения.
- •Задачи расчета ферм. Аналитические способы определения усилий в стержнях ферм (способ вырезания узлов, способ сечений).
- •Момент силы относительно оси. Зависимость между моментами силы относительно оси и относительно центра, лежащего на этой оси.
- •Момент силы относительно центра как вектор. Векторная формула для нахождения момента силы.
- •Приведение произвольной пространственной системы сил к центру (теорема Пуансо). Главный вектор и главный момент произвольной пространственной системы сил.
- •Инварианты произвольной пространственной системы сил.
- •Частные случаи приведения произвольной пространственной системы сил к центру.
- •Условия и уравнения равновесия произвольной пространственной системы сил. Частный случай пространственной системы параллельных сил.
- •Центр параллельных сил и его координаты.
- •Центр тяжести тела и его координаты. Способы определения положения центра тяжести.
- •Центр тяжести однородных тел. Центр тяжести объема, поверхности, линии. Примеры (центр тяжести треугольника, дуги окружности, кругового сектора).
- •Предмет и содержание кинематики. Основные понятия и задачи кинематики.
- •1. Векторный способ задания движения точки.
- •2. Координатный способ задания движения точки.
- •Естественный способ задания движения точки.
- •Определение траектории, скорости и ускорения точки при координатном способе задания движения.
- •Естественный трехгранник и естественные оси. Кривизна траектории.
- •Скорость и ускорение точки при естественном способе задания движения. Нормальное и касательное ускорения.
- •Равномерное и равнопеременное движение точки. Равномерное движение
- •Равнопеременное движение
- •Задание движения твердого тела. Поступательное движение твердого тела. Теорема о траекториях, скоростях и ускорениях точек тела при поступательном движении.
- •Вращательное движение тела вокруг неподвижной оси. Уравнение вращения. Угловая скорость и угловое ускорение. Векторное представление угловой скорости и углового ускорения.
- •Сложное движение точки. Теорема о сложении скоростей при сложном движении точки.
- •Сложное движение точки. Теорема о сложении ускорений при сложном движении точки.
- •Ускорение Кориолиса. Случай равенства нулю кориолисова ускорения.
- •Мгновенная ось вращения. Векторы угловой скорости и углового ускорения. Скорость произвольной точки тела (без доказательства).
- •Общий случай движения тела. Скорость и ускорение произвольной точки тела в общем случае (без доказательства).
- •Сложное (составное) движение твердого тела. Сложение поступательных движений.
- •Сложение мгновенных вращений твердого тела вокруг пересекающихся и параллельных осей.
- •Пара мгновенных вращений. Кинематический винт. Мгновенная винтовая ось.
Реакция заделки.
Р
ассмотрим
балку один конец которой АВ заделан в
стену. Такое крепление конца балки АВ
называется заделкой
в точке В.
Пусть на балку действует плоская система
сил. Определим силы, которые надо
приложить к точке В балки, если часть
балки АВ отбросить. К сечению балки (В)
приложены распределенные силы реакции.
Если эти силы заменить элементарными
сосредоточенными силами и затем привести
их к точке В, то в точке В получим силу
(главный вектор сил реакции) и пару сил
с моментом М (главный вектор сил реакции
относительно точки В) . Момент М
называют
моментом заделки или
рективным моментом. Силу
реакции
можно заменить двумя составляющими
и
.
Заделка в отличие от шарнира создает не только неизвестную по величине и направлению реакцию , но еще и пару сил с неизвестным моментом М в заделке.
Равновесие системы тел. Определение реакций внешних и внутренних связей.
Рассмотрим равновесие сил, приложенных к системе взаимодействующих между собой тел. Тела могут быть соединены между собой с помощью шарниров или иным способом.
Силы, действующие на рассматриваемую систему тел, можно разделить на внешние и внутренние.
Внешними называются силы, с которыми на тела рассматриваемой системы действуют тела, не входящие в эту систему сил.
Внутренними называются силы взаимодействия между телами рассматриваемой системы.
Связи, соединяющие части данной конструкции, будем называть внутренними в отличие от внешних связей, скрепляющих конструкцию с телами, в нее не входящими (например, с опорами).
Способ решения подобных задач состоит в том, что конструкцию сразу расчленяют на отдельные тела и составляют условия равновесия каждого из тел в отдельности (см. задачу 24). При этом реакции внутренних связей будут попарно равны по модулю и противоположны по направлению. Для конструкции из п тел, на каждое из которых действует произвольная плоская система сил, получится таким путем Зп уравнений, позволяющих найти Зп неизвестных (при других системах сил число уравнений соответственно изменится). Если для данной конструкции число всех реакций связей будет больше числа уравнений, в которые эти реакции входят, то конструкция будет статически неопределимой.
Внутренними усилиями в каком-нибудь сечении тела или конструкции (балки, арки и др.) называют силы, с которыми части тела, разделенные этим сечением, действуют друг на друга. Метод определения внутренних усилий аналогичен методу, применяемому при изучении равновесия систем тел. Сначала рассматривают равновесие всего тела (конструкции) в целом и определяют реакции внешних связей. Затем сечением, в котором требуется найти внутренние усилия, разделяют тело на две части и рассматривают равновесие одной из них. При этом, если система действующих на тело внешних сил плоская, то действие отброшенной части заменится в общем случае' плоской системой распределенных по сечению сил; эти силы, как и в случае жесткой заделки (см. рис. 55), представляют одной приложенной в центре сечения силой с двумя наперед неизвестными, составляющими X, Y и парой с наперед неизвестным моментом m.