
- •Геометрия.
- •Доказать один из признаков параллельности прямых.
- •Формула площади круга, кругового сектора и сегмента (без доказательства).
- •Доказать теорему об углах с соответственно параллельными сторонами.
- •Формула длины окружности, длины дуги окружности (без доказательства).
- •Доказать один из признаков равенства прямоугольных треугольников.
- •Формулы площади правильного многоугольника.
- •Доказать один из признаков равенства треугольников.
- •Формулы, выражающие сторону правильного многоугольника через радиус вписанной окружности.
- •Параллелограмм. Доказать одно из свойств параллелограмма.
- •Центральная симметрия. Свойства центральной симметрии.
- •Общие свойства
- •Д оказать теорему о сумме внутренних углов многоугольника.
- •Формулы площади треугольника, прямоугольного треугольника (без доказательства).
- •Ромб. Доказать основные свойства ромба.
- •Осевая симметрия. Свойства осевой симметрии.
- •Прямоугольник. Квадрат. Доказать основное свойство прямоугольника.
- •Поворот. Свойство поворота трапеции.
- •Трапеция. Виды трапеции. Доказать теорему о средней линии трапеции.
- •Параллельный перенос. Свойства параллельного переноса.
- •Доказать теорему Фалеса.
- •Гомотетия. Свойства гомотетии.
- •Доказать теорему о свойстве касательной к окружности.
- •Замечательные точки треугольника (без доказательства).
- •Центральный угол. Вписанный угол. Доказать теорему об измерении вписанного угла.
- •Формулы для вычисления площади параллелограмма, ромба (без доказательства).
- •Доказать теорему о пропорциональных отрезках.
- •Основные тригонометрические тождества (без доказательства).
- •Доказать один из признаков подобия треугольников.
- •Значение синуса, косинуса и тангенса некоторых углов (без доказательства).
- •Доказать один из признаков подобия прямоугольных треугольников.
- •Формулы координат середины отрезка и расстояния между двумя точками на плоскости (без доказательства).
- •Доказать теорему Пифагора.
- •32. Уравнение окружности и прямой на плоскости (без доказательства).
- •33. Доказать теорему о высоте прямоугольного треугольника , проведенной из вершины прямого угла.
- •34. Формулы для радиуса вписанной и описанной окружностей.
- •35. Доказать свойство биссектрис угла.
- •36. Теорема о скалярном произведении векторов. Следствие о перпендикулярных векторах (без доказательства).
- •37. Доказать формулу Герона.
- •38. Определение синуса, косинуса и тангенса для любого угла 0° до 180° (без доказательства).
- •39. Доказать теорему об отрезках пересекающихся хорд.
- •40. Коллинеарные векторы. Теорема о разложении вектора по двум неколлинеарным векторам.
- •41. Доказать теорему синусов.
- •42. Площадь квадрата, прямоугольника, трапеции (без доказательства).
- •43. Равнобедренный треугольник. Свойства равнобедренного треугольника.
- •44. Соотношения между сторонами и углами прямоугольного треугольника (без доказательства).
- •45. Доказать теорему косинусов.
- •46. Движение. Свойства движения (без доказательства).
- •47. Доказать теорему о сумме внутренних углов треугольника.
- •48. Свойства перпендикуляра и наклонной (без доказательства).
- •49. Доказать теорему об отношении площадей подобных многоугольников.
- •50. Неравенство треугольника (без доказательства). Следствие.
Доказать один из признаков подобия треугольников.
Первый признак подобия
треугольников: Если два угла одного
треугольника равны двум углам другого
треугольника, то такие треугольники
подобны.
Второй признак подобия треугольников: Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.
Третий признак подобия треугольников: Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.
А] Если три стороны одного
треугольника пропорциональны трем
сторонам другого, то такие треугольники
подобны
.
Значение синуса, косинуса и тангенса некоторых углов (без доказательства).
Доказать один из признаков подобия прямоугольных треугольников.
Первый признак подобия треугольников.
Если угол одного треугольника равен углу другого, а стороны, образующие тот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны.
Доказательство. Начало доказательства одинаково для всех трех признаков. Рассмотрим два треугольника ABC и A1B1C1, для которых выполняется одно из трех сформулированных условий (рис. 1). Причем будем считать, то обозначения выбраны следующим образом.
Первый признак. Равны углы при вершинах A и A1, кроме того,
Отложим на луче AB отрезок AB2 = A1B1 и проведем через B2 прямую, параллельную BC. Получившийся треугольник AB2C2 подобен треугольнику ABC по основной теореме о подобных треугольниках.
Нам остается доказать, то треугольник AB2C2 равен треугольнику A1B1C1 .
Первый признак. В треугольниках A1B1C1 и
AB2C2 равны углы при вершинах A и A1, A1B1 = AB2
. Кроме того, по условию,
а из того, то треугольники AB2C2 и ABC подобны,
следует равенство.
Из
этих двух равенств получаем (так как
A1B1 = AB2), то A1C1 = AC2. Значит, треугольники
A1B1C1 и AB2C2 равны по первому признаку
равенства треугольников.
Формулы координат середины отрезка и расстояния между двумя точками на плоскости (без доказательства).
Формула расстояния между двумя точками
Пусть A и B -- две точки плоскости, координаты которых в декартовой системе координат: (x1; y1) и (x2; y2), тогда
Формула
Строгая формулировка
Координаты середины отрезка с концами
и
находятся по формуле:
- координаты точки ;
- координаты точки
в декартовой системе координат на плоскости
Доказать теорему Пифагора.
b2 = a2 + c2
В одном случае (слева) квадрат разбит на квадрат со стороной b и четыре прямоугольных треугольника с катетами a и c.
В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c.
Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c.