
- •Геометрия.
- •Доказать один из признаков параллельности прямых.
- •Формула площади круга, кругового сектора и сегмента (без доказательства).
- •Доказать теорему об углах с соответственно параллельными сторонами.
- •Формула длины окружности, длины дуги окружности (без доказательства).
- •Доказать один из признаков равенства прямоугольных треугольников.
- •Формулы площади правильного многоугольника.
- •Доказать один из признаков равенства треугольников.
- •Формулы, выражающие сторону правильного многоугольника через радиус вписанной окружности.
- •Параллелограмм. Доказать одно из свойств параллелограмма.
- •Центральная симметрия. Свойства центральной симметрии.
- •Общие свойства
- •Д оказать теорему о сумме внутренних углов многоугольника.
- •Формулы площади треугольника, прямоугольного треугольника (без доказательства).
- •Ромб. Доказать основные свойства ромба.
- •Осевая симметрия. Свойства осевой симметрии.
- •Прямоугольник. Квадрат. Доказать основное свойство прямоугольника.
- •Поворот. Свойство поворота трапеции.
- •Трапеция. Виды трапеции. Доказать теорему о средней линии трапеции.
- •Параллельный перенос. Свойства параллельного переноса.
- •Доказать теорему Фалеса.
- •Гомотетия. Свойства гомотетии.
- •Доказать теорему о свойстве касательной к окружности.
- •Замечательные точки треугольника (без доказательства).
- •Центральный угол. Вписанный угол. Доказать теорему об измерении вписанного угла.
- •Формулы для вычисления площади параллелограмма, ромба (без доказательства).
- •Доказать теорему о пропорциональных отрезках.
- •Основные тригонометрические тождества (без доказательства).
- •Доказать один из признаков подобия треугольников.
- •Значение синуса, косинуса и тангенса некоторых углов (без доказательства).
- •Доказать один из признаков подобия прямоугольных треугольников.
- •Формулы координат середины отрезка и расстояния между двумя точками на плоскости (без доказательства).
- •Доказать теорему Пифагора.
- •32. Уравнение окружности и прямой на плоскости (без доказательства).
- •33. Доказать теорему о высоте прямоугольного треугольника , проведенной из вершины прямого угла.
- •34. Формулы для радиуса вписанной и описанной окружностей.
- •35. Доказать свойство биссектрис угла.
- •36. Теорема о скалярном произведении векторов. Следствие о перпендикулярных векторах (без доказательства).
- •37. Доказать формулу Герона.
- •38. Определение синуса, косинуса и тангенса для любого угла 0° до 180° (без доказательства).
- •39. Доказать теорему об отрезках пересекающихся хорд.
- •40. Коллинеарные векторы. Теорема о разложении вектора по двум неколлинеарным векторам.
- •41. Доказать теорему синусов.
- •42. Площадь квадрата, прямоугольника, трапеции (без доказательства).
- •43. Равнобедренный треугольник. Свойства равнобедренного треугольника.
- •44. Соотношения между сторонами и углами прямоугольного треугольника (без доказательства).
- •45. Доказать теорему косинусов.
- •46. Движение. Свойства движения (без доказательства).
- •47. Доказать теорему о сумме внутренних углов треугольника.
- •48. Свойства перпендикуляра и наклонной (без доказательства).
- •49. Доказать теорему об отношении площадей подобных многоугольников.
- •50. Неравенство треугольника (без доказательства). Следствие.
Осевая симметрия. Свойства осевой симметрии.
Осевая симметрия или симметрия относительно прямой - |Sl|
L – ось симметрии (прямая).
Т. M и M1 называются симметричными относительно прямой l, если l MM1 проходит через его середину.
Осевая симметрия пространства есть движение, а значит, обладает всеми свойствами движений: переводит прямую в прямую, отрезок ---в отрезок, луч ---в луч, плоскость ---в плоскость. Кроме того, это преобразование пространства, совпадающее со своим обратным: композиция двух симметрий относительно одной и той же прямой есть тождественное преобразование. При симметрии относительно прямой все точки этой прямой, и только они, остаются на месте (неподвижные точки преобразования). Прямые, перпендикулярные оси симметрии, переходят в себя. Плоскости, перпендикулярные оси симметрии также переходят в себя. Осевая симметрия есть поворот относительно оси симметрии на угол 180 . Симметрия относительно прямой является движением первого рода (не меняет ориентацию тетраэдра). Математически верная формулировка
При осевой симметрии: --- неподвижной является каждая точка оси симметрии и других неподвижных точек не существует; --- неподвижной прямой является ось симметрии (на ней индуцируется тождественное преобразование) и любая прямая, пересекающая ось симметрии и ей перпендикулярная (на каждой из этих прямых индуцируется центральная симметрия относительно точки ее пересечения с осью симметрии); --- неподвижной является любая плоскость, перпендикулярная оси (в каждой такой плоскости индуцируется центральная симметрия относительно точки ее пересечения с осью симметрии); --- осевая симметрия ---движение первого рода; --- преобразование, обратное осевой симметрии, есть эта же осевая симметрия, следовательно, композиция двух осевых симметрий относительно одной и той же оси есть тождественное преобразование.
Прямоугольник. Квадрат. Доказать основное свойство прямоугольника.
Прямоугольник – это параллелограмм, у которого все углы прямые.
Параллелограмм – четырехугольник, у которого противолежащие стороны попарно параллельны.
Квадрат – прямоугольник, у которого все стороны равны.
Диагонали прмоугольника равны.
Пусть ABCD-данный прямоугольник. Утверждение теоремы следует из равенства прямоугольных треугольников BAD и СDA. У них углы BAD и СDA равны как противолежащие стороны параллелограмма. Из равенства треугольников следует, что их гипотенузы равны. А гипотенузы есть диагонали прямоугольника.
Поворот. Свойство поворота трапеции.
Поворотом фигуры Ф на плоскости с центром в точке О на угол в данном направлении называется такое преобразование фигуры Ф, при котором каждой точке М, отличной от точки О, сопоставляется такая точка М1, что: 1) ОМ=ОМ1; 2) МОМ1= ; 3) угол МОМ1 откладывается от луча ОМ в заданном направлении.