Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Главная Шпора ТФКП теория.doc
Скачиваний:
8
Добавлен:
23.09.2019
Размер:
497.15 Кб
Скачать

Свойства регулярных функций:

1) сумма, разность, произведение регулярных функций f(z) и g'(z), а также их частное (при g(z)) и суперпозиция яв­ляются регулярными функциями;

2) регулярная функция бесконечно дифференцируема;

3) для регул.функции справедливы интегральная тео­рема Коши и интегральная формула Коши;

4) первообразная регулярной в односвязной области функ­ции регулярна.

Св-ва регулярности обратных ф-ий.Пусть ф-ия f регулярна в нек т. z0 и f ‘(z)0, тогда сущ. U(z0) и U(0): K: |z–z0| <r K’: |–0| 0 =f(z0) такие, что 1)K’: f(z)=, z=h(), zK т.е. сущ. обратная ф-ия 2) Обратная ф-ия h регулярна в т.0 3) В нек. окр-ти h’(0) = =1/f ’(z0)=1/f ‘(h(0)). Условие f ‘(z0)  |f ‘(z0)|, f ‘(z0) = u’x(x0, y0)+i v’x(x0, y0) тогда |f ‘(z0)|2 = (u’x )2 + (v’x )2 ={По Коши – Риману}= u’x v’y - u’y v’x = def f’(z0)

Изолированные особые точки однозначного характера.Ряды Лорана.

1Пусть функ регул. в кольце 0< < ( < < ,если )но не опр.в самой т. .В этом случае точку наз.изолир.особой точкой однозначного характера для функ. .По поведению функции вблизи точки различают три вида изол. т.особого характера:

1. Если существует и конечен, то устранимая особая точка;

2. Если сущ., но равен бесконечности, то называется полюсом функции ;

3. Если не сущ., то точка наз. существенно особой точкой функции .

Определить тип особой точки можно с помощью теоремы

Теорема1.Для того, чтобы изолир.особая точка была устранимой особой точкой функ. , необх. и дост., чтобы функ. была непрер.и огр.в нек. проколотой окрестности точки .

Теорема2Для того, чтобы точка ( ) была полюсом , необх. и дост, чтобы эта функ.представлялась в виде , ,где -функция, регул. в т. ( , , где - функция, регулярная в точке ) Целое число наз.порядком полюса ( ).

2.Теорема3.Функ. , регулярная в кольце : представляется в этом кольце сходящимся степенным рядом , где , , . Ряд называется рядом Лорана для функции в окрестности точки .

Ряд Лорана наз.сход. в точке , если в этой точке сход. ряды и .

Главной частью ряда Лорана в окрестности особой точки, конечной или бесконечной, называется сумма всех тех и только тех членов ряда Лорана, которые стремятся к бесконечности при .

Главная часть- функция, регулярная во всей комплексной плоскости, кроме точки .

Правильной частью ряда Лорана в окрестности особой точки называется разность между и главной частью ряда Лорана.

Правильная часть ряда Лорана- функция, регулярная в точке .

3. Теорема 4. Для того, чтобы изолированная особая точка была устранимой особой точкой функции , необходимо и достаточно, чтобы главная часть ряда Лорана в окрестности точки была тождественным нулем.

Теорема 5. Для того, чтобы изолированная особая точка была полюсом функции , необходимо и достаточно, чтобы главная часть ряда Лорана в окрестности точки содержала лишь конечное число членов, - порядок полюса.

Теорема 6. Для того, чтобы изолированная особая точка была существенно особой точкой функции , необходимо и достаточно, чтобы главная часть ряда Лорана в окрестности точки содержала бесконечное число членов.

Определение Точка называется точкой сгущения полюсов функции , если регулярна в некотором кольце 0< < , за исключением бесконечного числа полюсов , таких, что .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]