Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
математический анализ экзамен.docx
Скачиваний:
10
Добавлен:
20.09.2019
Размер:
1.41 Mб
Скачать

41)Производная по направлению

В математическом анализепроизводная по направлению — это обобщение понятия производной на случай функции нескольких переменных. Производная по направлению показывает, насколько быстро функция изменяется при движении вдоль заданного направления.

Производная функции одной переменной показывает, как изменяется её значение при малом изменении аргумента. Если мы попытаемся по аналогии определить производную функции многих переменных, то столкнёмся с трудностью: в этом случае изменение аргумента (то есть точки в пространстве) может происходить в разных направлениях, и при этом будут получаться разные значения производной. Именно это соображение и приводит к определению производной по направлению.

Рассмотрим функцию   от   аргументов в окрестности точки  . Для любого единичного вектора   определим производную функции   в точке   по направлению   следующим образом:

Значение этого выражения показывает, как быстро меняется значение функции при сдвиге аргумента в направлении вектора  .

Если направление сонаправленно с координатной осью, то производная по направлению совпадает с частной производной по этой координате.

42)Градиент

Градие́нт (от лат. gradiens, род. падеж gradientis — шагающий, растущий) — вектор, своим направлением указывающий направление наискорейшего возрастания некоторой величины  , значение которой меняется от одной точки пространства к другой (скалярного поля), а по величине (модулю) равный быстроте роста этой величины в этом направлении.

Для случая трёхмерного пространства градиентом скалярной функции   координат  ,   называется векторная функция с компонентами

.

Или, использовав для единичных векторов по осям прямоугольных декартовых координат  :

Если   — функция   переменных  , то её градиентом называется  -мерный вектор

компоненты которого равны частным производным   по всем её аргументам.

Свойства

Производная по направлению имеет МАХ значение в направлении совпадающем с градиентом.

Производная в направлении ⊥ градиенту равно 0.

Градиент ⊥ линиям уровня.

43) Локальный мах и мин

Свойства дифференцируемых функций

Локальный максимум и локальный минимум функции.

Дадим определение локального максимума и локального минимума функции.

Говорят, что функция f(x) имеет в точке c локальный максимум (минимум), если найдётся такая окрестность точки c, в пределах которой значение    является наибольшим (наименьшим) среди всех значений функции в этой окрестности, то есть всюду в этой окрестности выполняется условие   (  ).

Для обозначения локального максимума и локального минимума функции употребляется единое название локальный экстремум.

Следующая теорема устанавливает необходимое условие экстремума дифференцируемой функции.

Теорема 17.1 (называется иногда теоремой Ферма). Если функция f(x) дифференцируема в точке  c и имеет в этой точке локальный экстремум, то  .

Доказательство. Так как функция f(x) имеет в точке c локальный экстремум, то она не может в этой точке ни возрастать, ни убывать. Следовательно, в силу теоремы 16.1 производная    не может быть ни положительна, ни отрицательна, то есть   .

Теорема доказана.

Геометрический смысл этой теоремы заключается в том, что если в точке локального экстремума график функции имеет касательную, то эта касательная параллельна оси абсцисс (рис. 5).

Отметим, что равенство нулю производной является необходимым, но не достаточным условием локального экстремума. Рассмотрим в качестве примера функцию    ( рис.6).

 Производная этой функции  . В точке    . Однако функция   возрастает на всей числовой оси и не имеет в точке    локального экстремума.

Производная функции, ее геометрический и механический смыслы. Уравнения касательной и нормали. Производная суммы, произведения, частного. Производная сложной и обратной функций. Функция, заданная параметрически. Дифференцирование функций, заданных параметричски. 

Необходимое условие экстремума

Необходимое условие экстремума

      Функция g(x) в точке  имеет экстремум(максимум или минимум), если функция определена в двухсторонней окрестности точки и для всех точек x  некоторой области:  , выполнено соответственно неравенство

(в случае максимума) или  (в случае минимума).

Экстремум функции находиться из условия: , если производная существует, т.е. приравниваем первую производную функции к нулю.

Критические точки

критическая точка функции это точка, в которой производная функции не существует или равна нулю. 

Экстремум функции двух переменных

Пусть задана функция двух переменных z=z(x,y), (x,y) D. ТочкаM0(x0;y0) - внутренняя точка области D.

Если в D присутствует такая окрестность UM0 точки M0, что для всех точек

то точка M0 называется точкой локального максимума. А само значение z(M0) - локальным максимумом.

А если же для всех точек

то точка M0 называется точкой локального минимума функции z(x,y). А само значение z(M0) - локальным минимумом.

Локальный максимум и локальный минимум называются локальными экстремумами функции z(x,y). На рис. 1.4 поясняется геометрический смысл локального максимума: M0 - точка максимума, так как на поверхности z =z (x,y) соответствующая ей точка C0 находится выше любой соседней точки C (в этом локальность максимума).

Заметим, что на поверхности в целом есть точки (например, В), которые находятся выше C0, но эти точки (например, В) не являются "соседними" с точкой C0.

В частности, точке В соответствует понятие глобального максимума:

Аналогично определяется и глобальный минимум:

Нахождение глобальных максимумов и минимумов будет рассмотрено в п.1.10.

Теорема 1.3 (необходимые условия экстремума).

Пусть задана функция z =z (x,y), (x,y) D. Точка M0(x0;y0 D - точка локального экстремума.

Если в этой точке существуют z'x и z'y, то

Геометрическое доказательство "очевидно". Если в точке C0 на (рис.1.4) провести касательную плоскость, то она "естественно" пройдет горизонтально, т. е. под углом  к оси Ох и к оси Оу.

Тогда в соответствии с геометрическим смыслом частных производных (рис.1.3):

что и требовалось доказать.