Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVET.doc
Скачиваний:
5
Добавлен:
18.09.2019
Размер:
816.13 Кб
Скачать

Билет #7

1. Влажность воздуха и способы её определения.

Абсолютной влажностью  воздуха называют величину, численно равную массе водяного пара, содержащегося в 1 м3 воздуха, т.е. плотность водяного пара в воздухе при данных условиях. Абсолютную влажность воздуха обычно выражают в граммах на метр кубический.

Если пар далек от состояния насыщения, он мало отличается от идеального газа и к нему применимо уравнение Менделеева — Клапейрона - парциальное давление водяного пара при неизменной температуре пропорционально его плотности. Парциальное давление водяного пара, содержащегося в воздухе, называют упругостью водяного пара. На основе пропорциональности между р и  в метеорологии за абсолютную влажность воздуха принимают упругость водяного пара. Ее обычно выражают в миллиметрах ртутного столба. Абсолютная влажность воздуха не может быть больше плотности насыщенного водяного пара при данной температуре (<н).

Если известна только абсолютная влажность воздуха, еще нельзя судить, насколько сух или влажен воздух. Для определения степени влажности воздуха необходимо также знать, близок или далек водяной пар, содержащийся в воздухе, от состояния насыщения. Поэтому кроме абсолютной влажности введено понятие относительной влажности.

Относительной влажностью воздуха  называют величину, равную отношению абсолютной влажности к плотности насыщенного водяного пара при данной температуре: . Относительную влажность обычно выражают в процентах.

В метеорологии понятие относительной влажности устанавливают по формуле

Если влажный воздух охлаждать, то при некоторой температуре водяной пар в нем становится насыщенным, а затем конденсируется в жидкость, образуя росу. Температуру, при которой водяной пар в воздухе становится насыщенным, называют точкой росы. При такой температуре абсолютная влажность воздуха равна плотности насыщенного пара, а относительная влажность воздуха равна 100 %.

Влажность воздуха экспериментально определяют с помощью приборов — гигрометров и психрометров.

Волосной гигрометра основан на свойстве обезжиренного волоса изменять свою длину при изменении влажности воздуха: при увеличении влажности волос удлиняется, а при уменьшении — укорачивается.

К онденсационный гигрометр предназначен для непосредственного определения точки росы. Его устройство изображено (в разрезе) на рис.. Прибор состоит из металлической цилиндриче­ской камеры 1, передняя стенка (основание) 2 которой зеркально отполирована. На корпус камеры в области ее отполированного основания надето металлическое зеркально отполированное кольцо 3, изготовленное из того же материала, что и камера. Это кольцо отделено от камеры теплоизолирующей прокладкой 4. В камеру вставлен термометр 5 и трубка 6, соединенная с резиновым баллоном от пульверизатора 7. Камера наполовину заполнена легко испаряющейся жидкостью — эфиром 8. Конец трубки 6 погружен в эфир. Закачивая в камеру воздух с помощью резинового баллона, мы вызываем интенсивное испарение эфира, вследствие чего стенки камеры сильно охлаждаются. При понижении температуры стенок до точки росы водяной пар, содержащийся в воздухе, на границе соприкосновения со стенками камеры начинает конденсироваться и образует росу. Полированное основание камеры запотевает, в то время как поверхность охватывающего ее полированного кольца, теплоизолированного от камеры, остается блестящей. Это позволяет точно установить момент начала конденсации и по показаниям термометра, вставленного в камеру, определить точку росы.

Психрометр состоит из двух одинаковых термометров, укрепленных на вертикальной стойке. Носик одного термометра обернут марлей, конец которой опущен в чашку с водой. Вследствие явления капиллярности вода по марле поднимается вверх, поэтому марля всегда влажная. Носик второго термометра сухой. Он граничит непосредственно с воздухом. При испарении воды из марли термометр влажный охлаждается и его температура становится меньше температуры воздуха. Чем меньше относительная влажность воздуха, тем интенсивнее происходит испарение воды из марли и тем больше становится разность температур мокрого и сухого термометров. Наоборот, с увеличением относительной влажности воздуха испарение воды из марли замедляется и разность температур термометров уменьшается. При стопроцентной влажности вода вообще перестает испаряться и показания термометров становятся одинаковыми. В случаях, когда относительная влажность воздуха меньше 100%, по разности температур сухого и мокрого термометров с помощью специальных психрометрических таблиц можно определить относительную влажность воздуха. Психрометр значительно точнее волосного гигрометра

2. Напряженность электрического поля. Графическое изображение электрических полей. Свойства электростатического поля

Электрическое поле создается как неподвижными, так и движущимися зарядами. О наличии электрического поля можно судить, прежде всего, по его способности оказывать силовое действие на электрические заряды, движущиеся и неподвижные, а также по способности индуцировать электрические заряды на поверхности проводящих нейтральных тел.

Поле, создаваемое неподвижными электрическими зарядами, называют стационарным электрическим, или электростатическим полем. Оно представляет собой частный случай электромагнитного поля, посредством которого осуществляются силовые взаимодействия между электрически заряженными телами, движущимся в общем случае произвольным образом относительно системы отсчета.

Количественной характеристикой силового действия электрического поля на заряженные тела служит векторная величина E, называемая напряжённостью электрического поля. (E = F / q)

Она определяется отношением силы F, действующей со стороны поля на точечный пробный заряд q, помещенный в рассматриваемую точку поля, к величине этого заряда.

Понятие «пробный заряд» предполагает, что этот заряд не участвует в создании электрического поля и так мал, что не искажает его, т. е. не вызывает перераспределения в пространстве зарядов, создающих рассматриваемое поле. В системе СИ единицей напряженности служит 1 В / м, что эквивалентно 1 Н / Кл.

Напряженность поля точечного заряда. Используя закон Кулона (F=k*(q1*q2)/r^2) найдем выражение для напряжённости электрического поля, создаваемого точечным зарядом q в однородной изотропной среде на расстоянии r от заряда: E=F/q=k*q/r^2.

В этой формуле r – радиус-вектор, соединяющий заряды q и qпр.

Принцип суперпозиции. Напряжённость поля, создаваемого системой неподвижных точечных зарядов q1, q2, q3 … qn, равна векторной сумме напряжённостей электрических полей, создаваемых каждым из этих зарядов в отдельности:

Графическое изображение электрического поля. Метод графического изображения электрического поля был предложен английским физиком Майклом Фарадеем. Суть метода заключается в том, что на чертеже изображаются непрерывные линии, которые называют линиями напряженности, или силовыми линиями.

Правило построения линий напряженности заключается в том, что касательные к ним в каждой точке чертежа совпадают с направлением вектора напряженности поля в изображаемой точке. Таким образом, силовые линии имеют то же направление, что и напряжённость поля и не пересекаются, так как в каждой точке электрического поля вектор E имеет лишь одно направление.

С помощью силовых линий можно дать количественную характеристику напряжённости электрического поля. Для этого густота, или плотность, силовых линий выбирается пропорционально модулю вектора напряженности. Плотность силовых линий определяется как число линий, пронизывающих единичную поверхность в направлении, перпендикулярном к этой поверхности.

Изображение силовых линий позволяет получать картину поля, которая наглядно показывает, чему равна напряженность в разных частях поля и как она изменяется в пространстве.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]