Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matematika_ekzamin_2.doc
Скачиваний:
18
Добавлен:
13.09.2019
Размер:
621.06 Кб
Скачать

10. Найпростіші схеми дедуктивних міркувань. Неповна індукція.

Найпростіші схеми дедуктивних міркувань. Вважають, що в основі кожного дедуктивного міркування лежить певне правило висновку. 1) Правило висновку ( і , де - загальна посилка, - часткова посилка і - висновок. 2) Правило заперечення . 3) Правило силогізму . Застосування цих правил гарантує, що міркування буде дедуктивним, тобто дозволяє з істинних посилок виводити істинні висновки. Наприклад, 1) Всі числа, запис яких закінчується нулем, діляться на 5; число не ділиться на 5, значить, його запис не закінчується 0. 2) Якщо натуральне число кратне 8, то воно кратне 4; якщо натуральне число кратне 4, то воно кратне 2; значить, якщо число кратне 8, то воно кратне 2. 3) Якщо запис числа закінчується нулем, то воно ділиться на 5; число не закінчується нулем, значить, воно не ділиться на 5.

Неповна індукція. Відомо, що 15 ділиться на 5, 25 ділиться на 5, 35 і 95 діляться на 5. враховуючи це, робимо висновок, що будь-яке число, запис якого закінчується цифрою 5, ділиться на 5. В розглянутому міркуванні на основі ряду часткових випадків робимо висновок загальний. Такі міркування називають неповною індукцією. Неповна індукція представляє собою таке міркування, при якому на основі того, що деякі об‘єкти сукупності мають певні властивості, робиться висновок про те, що ці властивості притаманні всім об‘єктам цієї сукупності. Висновки, отримані при неповній індукції, можуть бути як істинними, так і хибними. Так висновок про те, що кожне число, запис якого закінчується цифрою 5, ділиться на 5, істинний. А твердження «при будь-якому натуральному числі значення виразу є просте число» хибне. Дійсно, якщо , то отримаємо значення , тобто даний вираз є складовим числом.

11. Доведення або доказ у математиці — процедура, за допомогою якої встановлюють істинність гіпотези чи будь-якого твердження. Принципи доведення вивчаються спеціальною областю математики — теорією доказів.

У математиці доказом називається ланцюжок логічних висновків, що показує, що при якомусь наборі аксіом і правил виводу є правильним деяке твердження. Залежно від контексту, може матися на увазі формальний доказ (побудована за спеціальними правилами послідовність тверджень, записана на формальній мові) або текст на природній мові, за яким за бажанням можна відновити формальний доказ. Доказові твердження в математиці називають теоремами (у математичних текстах зазвичай мається на увазі, що доказ ким-небудь знайдений; виняток з цього звичаю в основному складають роботи з логіки, в яких досліджується само поняття доказу); якщо ані твердження, ані його заперечення ще не доведені, то таке твердження називають гіпотезою. Іноді в процесі доведення теореми виділяються докази менш складних допоміжних тверджень, званих лемами. Формальними доказами займається спеціальна гілка математики — теорія доказів. Самі формальні докази математики майже ніколи не використовують, оскільки для людського сприйняття вони дуже складні і часто займають дуже багато місця. Звичайний доказ має вид тексту, в якому автор, спираючись на аксіоми і доведені раніше теореми, за допомогою логічних засобів показує істинність деякого твердження. На відміну від інших наук, в математиці недопустимі емпіричні докази: всі твердження доводяться виключно логічними способами. У математиці важливу роль грають математична інтуїція і аналогії між різними об'єктами і теоремами; проте, всі ці засоби використовуються вченими тільки при пошуку доказів, самі докази не можуть ґрунтуватися на таких засобах. Докази, написані на природних мовах, можуть бути не дуже докладними з розрахунку на те, що підготовлений читач сам зможе відновити деталі. Строгість доказу гарантується тим, що його можна представити у вигляді запису на формальній мові (це і відбувається при комп'ютерній перевірці доказів).

Помилковим доказом називається текст, що містить логічні помилки, тобто такий, за яким не можна відновити формальний доказ. У історії математики були випадки, коли видатні учені публікували невірні «докази», проте зазвичай їхні колеги або вони самі досить швидко знаходили помилки. (Одна з теорем, що найчастіше неправильно доводилися, — Велика теорема Ферма. Досі трапляються люди, що не знають про те, що вона доведена, і пропонують нові невірні «докази»). Помилковим може бути тільки визнання «доказу» на природній або формальній мові доказом; формальний доказ помилковим не може бути за визначенням. У математиці існують невирішені проблеми, рішення яких ученим дуже хотілося б знайти. За докази особливо цікавих і важливих тверджень математичні товариства призначають премії.

12. Схема розв'язування задач на побудову алгебраїчним методом Суть алгебраїчного методу полягає в тому, що в припущенні, що задача розв'язана, виділяють на малюнку такі невідомі елементи (відрізки), до побудови яких зводиться розв'язання задачі. Потім на основі даних умови задачі і відомих теорем з геометрії взаємозв'язки між даними і шуканими елементами (відрізками) виражаємо алгебраїчно у вигляді рівняння дають алгебраїчні вирази, за якими виконується побудова шуканих відрізків. Виходячи з цього, маємо таку схему розв'язування задачі на побудову алгебраїчним методом: 1) складання рівняння (аналіз); 2) розв'язування рівняння; 3)дослідження одержаних розв'язків(формул) на можливість їх побудови циркулем і лінійкою; 4) побудова шуканих відрізків (розв'язків рівняння) і побудова шуканої фігури.