
- •6.Гравітаційна взаємодія поблизу поверхні Землі.
- •7.Електрична взаємодія. Закон Кулона.
- •8. Ждерело електричної взаємодії. Потенціал і напруженість поля точкового заряду.
- •10. Фізичні властивості твердих тіл та рідин.
- •11. Маса. Зв'язок маси тіла з його вагою. Одиниці виміру маси та ваги.
- •12. Терези. Типи терезів та вимірювання ваги.
- •13. Маса, як мірило інертності тіла. Другий закон Ньютона.
- •14. Густина, як фізична характеристика речовини. Методи визначення густини.
- •15. Закон Архімеда. Вплив сили Архімеда на результати вимірів ваги тіла.
- •17.Матеріальна точка (мт). Визначення положення мт у просторі, радіус-вектор.
- •18.Характеристики руху. Середня та миттєва швидкість. Нормальне та тангенціальне прискорення. Одиниці виміру швидкості та прискорення.
- •19. Інерціальні системи. Перший закон Ньютона.
- •23. Третій закон Ньютона
- •24. Пружна деформація. Закон Гука. Модуль Юнга. Енергія деформованої пружини.
- •26. Закон збереження енергії.
- •27. Однорідне силове поле. Рух мт в однорідному силовому полі.
- •28. Сили тертя. Сухе та грузле тертя. Рух твердого тіла по похилій площині.
- •29. Поступальні та обертальні рухи твердого тіла. Кутова швидкість та кутове прискорення.
- •30. Момент інерції твердого тіла. Моменти інерції тіл найпростішої форми.
- •36. Закон Паскаля.
- •36.Закон Паскаля.
- •37. Закон Архімеда.
- •38.Принцип дії гідравлічного пресу.
- •39.Гідродинаміка.Теорема про неперервність течії.
- •40.Рівняння Бернуллі та його наслідки.
- •50. Рівняння Клапейрона
- •60. Закон Дюлонга та Пті.
- •61. Барометрична формула
- •62. Адіабатичний процес. Рівняння адіабати.
- •63. Цикл Карно. Коефіцієнт корисної дії теплової машини.
- •68. Капілярні явища. Сила поверхневого натягу, висота підняття рідини в капілярі.
- •69. Поле точкового заряду. Силові лінії електричного поля. Геометрична інтерпретація полів силовими лініями.
- •Електричний диполь. Дипольний момент. Поле диполя.
- •71. Теорема Гауса
- •74. П’єзоелектрики, сегнетоелектрики, піроелектрики.
- •72. Полярні і неполярні молекули. Поляризація речовини.
- •73. Вплив речовини діелектрика на електричне поле.
- •76. Джерело електрорушійної сили (гальванічний елемент, електрогенератори)
- •77. Конденсатори. Ємність плоского конденсатора.
- •78. Паралельне та послідовне з’єднаня конденсаторів.
- •Закон Ома для повного кола
- •Паралельне і послідновне з*єднання резисторів.
- •Паралельне і послідновне з*єднання резисторів.
- •90. Електронна лампа тріод.
- •92. Напруженість та магнітна індукція. Сила Лоренца.
- •Закон циркуляції магнітного поля
- •Соленоїд. Енергія та індуктивність довгого соленоїда.
- •Явище електромагнітної індукції. Закон Фарадея.
- •Принцип дії електричного генератора змінного струму
- •99. Класифікація матеріалів за магнітними властивостями.Феромагнетики.Парамагнетики.Діамагнетики.
- •104) Променева трубка. Принцип роботи осцилографа .Фігури Ліссажу
- •105) Умови виникнення періодичного руху
- •106. Найпростіші коливальні системи. Математичний, пружинний та фізичний маятники.
- •109. Електричні коливання. Електричний коливальний контур
- •110. Згасаючі коливання. Рівняння і характеристик згасаючих коливань
- •112. Вимушені коливання. Резонанс
- •117. Енергія світлової хвилі. Вектор Пойтінга.
- •118.Принцип Ферма розповсюдження хвиль.Закони відбиття та заломлення світлових хвиль.
- •120.Фотометрія.Сила світла,освітленість,світимість – визначення та одиниці виміру.
- •119.Коефіцієнти відбивання та проходження електромагнітних хвиль.
- •127.Інтерференція світла у тонких плівках. Просвітлення оптики
- •126.Інтерференція світла від двох когерентних джерел.
- •Елементи квантової фізики. Принцип невизначеності. Взаємодія світла з речовиною. Поглинання та випромінювання світла атомами. Постулати Бора.
- •Поширення світла в речовині
- •Поглинання світла
- •Розсіювання світла
- •132. Серії випромінювання. Умови квантування.
- •141. Термоядерний синтез.
- •142. Атомна енергетика.
- •Альфа-розпад
- •Бета-розпад
- •Гамма-розпад (ізомерний перехід)
141. Термоядерний синтез.
Термоядерна реакція — реакція синтезу (злиття) легких ядер, які відбуваються лише при високій температурі. У результаті вимушеного зближення між ядрами виникають сили притягання, достатні для втримання ядер. У такий спосіб утворюється новий елемент. У природі такі процеси відбуваються в зірках. На цих реакціях ґрунтується принцип дії водневої бомби.
Насправді реакції синтезу легких ядер відбуваються з помітною інтенсивністю при значно нижчих температурах, порядку 107 К. Причина цього – наявність у тепловому русі частинок з швидкостями, значно вищими від середніх; крім того, істотну роль відіграє так званий тунельний ефект. Згідно з квантовою механікою існує певна ймовірність того, що частинка проникне крізь потенціальний бар’єр з енергією, меншою від нього, проходячи наче через тунель в бар’єрі. Найсприятливіші умови створюються для реакцій синтезу ядер ізотопів водню.
У реакціях синтезу виділяється енергії більше, ніж при діленні важких ядер. При синтезі 400 грамів гелію звільняється енергія, еквівалентна 10 400 тонам вугілля, або 2 грами дейтерію дають 1013 джоуль енергії.
Але досі на Землі не вдалося здійснити керовану термоядерну реакцію, тому що для зближення ядер атомів на близькі відстані необхідна велика енергія. Єдина можливість – це перевести речовину в стан плазми, а потім збільшити температуру плазми настільки, щоб ядра почали взаємодіяти. Але поки що на Землі не знайдено матеріалу, який би витримав температуру 107 К. Некерована реакція синтезу вибухового типу була використана у водневій бомбі.
Для утворення високотемпературної призми практикуються потужні імпульсні електричні розряди в газах. У цих розрядах максимальна сила струму досягає величини 2*106 А. Імпульси такого струму дістають від заряджених потужних батарей конденсаторів. Імпульсні електричні розряди проводяться в дейтерієво-тритієвій суміші та інших газах.
Створення керованої термоядерної реакції є генеральним напрямом енергетики майбутнього.
142. Атомна енергетика.
АТОМНА ЕНЕРГЕТИКА - область техніки, заснована на використанні реакції поділу атомних ядеp для вироблення теплоти та виробництва електpоенергіі. Існують pі зні типи паливних циклів, що залежать від типу pеактоpа і від того, як пpотікає кінцева стадія циклу.
Атомна енергія зумовлюється ядерними силами, які діють між нуклонами, тобто нейтронами, і протонами. Енергія зв'язку, яка припадає на 1 нуклон, неоднакова для різних ядер. Вона найбільша для ядер середньої ваги (8,6 МеВ); для найважчих ядер — бл. 7,5 МеВ; для легких ядер вона змінюється від 1,1 МеВ (дейтерій) до 7,0 МеВ (4He).
Першу в світі атомну електростанцію було збудовано в СРСР і пущено 27 червня 1954.
Для одержання атомної енергії можна користуватися ядерними реакціями поділу і ядерними реакціями синтезу. Реакції синтезу можуть відбуватися тільки тоді, коли ядра наближаються одне до одного на відстань, меншу за 10-13 см, на якій починають діяти ядерні сили. Зближенню ядер протидіють кулонівські сили відштовхування; тому, щоб ці сили подолати, ядра повинні мати достатню енергію. Одержання вільних нейтронів і прискорення руху заряджених частинок вимагає витрати енергії. Імовірність попадання таких частинок у ядра дуже мала. Тому витрачена енергія перевищує енергію, яка виділяється при ядерних реакціях. Енергетичний виграш можна дістати тільки в тому випадку, коли перетворення відбувається внаслідок ланцюгових реакцій.
Ядерна енергетика (атомна енергетика) — галузь енергетики, що використовує ядерну енергію для електрифікації і теплофікації; область науки і техніки, що розробляє методи і засоби перетворення ядерної енергії в електричну і теплову. Основа ядерної енергетики — атомні електростанції, які забезпечують близько 6 % світового виробництва енергії та 13-14 % електроенергії.
Атомна електростанція в основному складається із тих самих елементів, що й звичайна теплова. Основна відмінність у генераторі енергії. У звичайному котлі використовується хімічна енергія згоряння органічного палива, тобто енергія зв’язку атомів вуглецю і кисню; в ядерному реакторі виділяється енергія зв’язку нейтронів і протонів під час поділу ядер урану та плутонію.
140. Зв'язок між енергією і масою неминуче випливає з закону збереження енергії і того факту, що маса тіла залежить від швидкості його руху. Це видно з простого прикладу. При нагріванні газу в посудині йому повідомляється певна енергія. Швидкість хаотичного теплового руху молекул залежить від температури, і збільшується з нагріванням газу. Збільшення швидкості руху молекул згідно з формулою означає збільшення маси всіх молекул. Отже, маса газу в посудині збільшується при збільшенні його внутрішньої енергії.
За допомогою "теорії відносності» Ейнштейн встановив формулу зв'язку між енергією і масою:
E = mc2
Енергія тіла або системи тіл дорівнює масі, помноженої на квадрат швидкості світла.
Якщо змінюється енергія системи, то змінюється і її маса.
Радіоактивний розпад - спонтанна зміна складу нестабільних атомних ядер ( заряду Z, масового числа A) шляхом випускання елементарних частинок або ядерних фрагментів . Процес радіоактивного розпаду також називають радіоактивністю, а відповідні елементи радіоактивними. Радіоактивними називають також речовини, що містять радіоактивні ядра.
Розпад, що супроводжується випусканням альфа-частинок, назвали альфа-розпадом; розпад, що супроводжується випусканням бета-частинок, був названий бета-розпадом (в даний час відомо, що існують типи бета-розпаду без випускання бета-частинок, проте бета-розпад завжди супроводжується випусканням нейтрино або антинейтрино). Термін "гамма-розпад" застосовується рідко; випускання ядром гамма-квантів називають зазвичай ізомерних переходом. Гамма-випромінювання часто супроводжує інші типи розпаду.