
- •Часть I
- •Оглавление
- •Общее введение в компьютерную графику Предмет и область применения компьютерной графики
- •1. Отображение информации
- •2. Проектирование
- •3. Моделирование
- •4. Графический пользовательский интерфейс
- •Краткая история
- •Технические средства поддержки компьютерной графики
- •Вопросы и упражнения
- •Цвет в компьютерной графике о природе света и цвета
- •Цветовой график мко
- •Цветовые модели rgb и cmy
- •Цветовые модели hsv и hls
- •Пространство cie Luv
- •Вопросы и упражнения
- •Геометрические преобразования Системы координат и векторы
- •Уравнения прямой и плоскости
- •Аналитическое представление кривых и поверхностей
- •Пересечение луча с плоскостью и сферой
- •Интерполяция функций одной и двух переменных
- •Матрицы
- •Геометрические преобразования (перенос, масштабирование, вращение)
- •Переход в другую систему координат
- •Задача вращения относительно произвольной оси
- •Вопросы и упражнения
- •Представление геометрической информации Геометрические примитивы
- •Системы координат: мировая, объектная, наблюдателя и экранная
- •Однородные координаты. Задание геометрических преобразований в однородных координатах с помощью матриц
- •Вопросы и упражнения
- •Отсечение (клиппирование) геометрических примитивов
- •Алгоритм Сазерленда — Коэна отсечения прямоугольной областью
- •Отсечение выпуклым многоугольником
- •Клиппирование многоугольников
- •Вопросы и упражнения
- •Удаление невидимых поверхностей и линий
- •Удаление нелицевых граней многогранника Алгоритм Робертса
- •Алгоритм Варнока
- •Алгоритм Вейлера — Азертона
- •Метод z-буфера
- •Методы приоритетов (художника, плавающего горизонта)
- •Алгоритмы построчного сканирования для криволинейных поверхностей
- •Метод двоичного разбиения пространства
- •Метод трассировки лучей
- •Вопросы и упражнения
- •Проецирование пространственных сцен Основные типы проекций
- •Параллельные проекции
- •Центральные проекции
- •Математический аппарат
- •Ортогональные проекции
- •Косоугольные проекции
- •Центральные проекции
- •Специальные картографические проекции. Экзотические проекции земной сферы
- •Стереографическая проекция
- •Гномоническая проекция
- •Ортографическая проекция
- •Проекции на цилиндр
- •Проекция Меркатора
- •Проекции на многогранник
- •Необычные проекции
- •Вопросы и упражнения
- •Растровое преобразование графических примитивов
- •Алгоритм Брезенхема растровой дискретизации отрезка
- •Алгоритмы Брезенхема растровой дискретизации окружности и эллипса
- •Алгоритмы заполнения областей
- •Вопросы и упражнения
- •Закрашивание. Рендеринг полигональных моделей
- •Простая модель освещения
- •Закраска граней Плоское закрашивание
- •Закраска методом Гуро
- •Закраска методом Фонга
- •Более сложные модели освещения
- •Устранение ступенчатости (антиэлайзинг)
- •Вопросы и упражнения
- •Визуализация пространственных реалистических сцен Свето-теневой анализ
- •Метод излучательности
- •Глобальная модель освещения с трассировкой лучей
- •Текстуры
- •Вопросы и упражнения
- •Список литературы
Однородные координаты. Задание геометрических преобразований в однородных координатах с помощью матриц
В предыдущей главе описывались геометрические преобразования на плоскости и в пространстве, а также было показано, как можно использовать аппарат матриц для таких задач. Для преобразований на плоскости использовались двумерные векторы и матрицы размерностью 2х2. В пространстве, соответственно, с этой же целью использовались трехмерные векторы и матрицы 3х3. Но такой подход не позволяет задавать с помощью матриц преобразования переноса и проекции. В связи с этим в проективной геометрии был разработан аппарат, позволяющий унифицировать все геометрические преобразования путем введения так называемых однородных координат.
Для пояснения такого подхода сначала
рассмотрим случай двумерного пространства.
Каждая точка плоскости с координатами
может одновременно рассматриваться
как точка трехмерного пространства с
координатами
,
т. е. как точка, лежащая на плоскости
.
С другой стороны каждой точке трехмерного
пространства
при условии
соответствует единственная точка этой
же плоскости
.
При этом получается, что каждой точке
плоскости
соответствует прямая, проходящая через
начало координат, т. е. устанавливается
взаимно однозначное соответствие между
точками плоскости и множествами
.
Если теперь рассматривать точку плоскости как принадлежащую трехмерному пространству, то ее двумерные преобразования можно будет описывать с помощью матриц 3х3, причем можно будет задавать таким способом не только повороты и масштабирование, но и сдвиги и проекции (как ортографические, так и центральные).
Поворот на угол относительно начала координат можно осуществить с помощью новой матрицы поворота:
.
Операция масштабирования может быть записана в виде
.
Перенос на вектор
также можно задать с помощью матрицы:
.
Проекции точки на оси координат определяются с помощью матриц проектирования:
.
Перейдем теперь к трехмерному пространству.
Каждой точке
будем ставить в соответствие точку
четырехмерного пространства
,
а для выполнения основных преобразований
будем использовать матрицы размерностью
4х4. Строятся они совершенно аналогично
тому, как это делалось в двумерном
случае. Матрица сдвига на вектор
имеет вид
,
матрица масштабирования тоже очевидным образом строится из трехмерной матрицы:
.
Проекции точек на координатные плоскости осуществляются с помощью матриц (более подробно проекции и их виды будут рассмотрены позднее):
.
Умножение этих матриц на вектор приводит к тому, что обнуляется одна из координат, и в результате получаем проекцию точки на соответствующую плоскость.
Матрица поворота, относительно оси
на угол
выглядит следующим образом
.
Отсюда легко понять, как строятся матрицы поворота относительно других координатных осей, а также матрица поворота относительно произвольной оси. Просто берем матрицы, построенные в третьей главе, и расширяем их путем добавления уже известных единичных вектора-строки и вектора-столбца:
.
Путем объединения приведенных элементарных преобразований можно построить и более сложные. В третьей главе мы использовали произведение простых матриц вращения для построения матрицы поворота относительно произвольной оси. Приведем один пример.
Пусть в пространстве заданы два отрезка
и
.
Будем строить матрицу преобразования,
переводящую первый отрезок во второй.
Это преобразование разложим на следующие
элементарные действия:
Сдвиг, перемещающий точку
в точку
.
Сдвиг начала координат в эту же точку
Если отрезки неколлинеарны:
— строится вектор нормали к плоскости, в которой лежат отрезки (для этого можно использовать векторное произведение исходных векторов);
— поворот относительно вектора нормали, совмещающий два отрезка по направлению (угол поворота можно определить с помощью скалярного произведения исходных векторов).
Масштабирование с целью выравнивания длины отрезков.
Возвращение начала координат в исходную точку.
Каждое из этих преобразований реализуется с помощью матрицы, а полное преобразование можно выполнить, используя произведение матриц.
Использование матриц очень удобно для
выполнения преобразований в пространстве,
хотя в некоторых случаях это приводит
к избыточному числу выполняемых операций.
Например, поворот одной точки в
пространстве относительно координатной
оси
с
помощью матриц в однородных координатах
требует 16 операций умножения и 12 операций
сложения. В то же время он легко может
быть выполнен с помощью формул
преобразования
,
т. е. с помощью всего лишь четырех умножений и одного сложения и одного вычитания. Операции сдвига также гораздо более экономично выполнять без использования матриц. Но когда речь идет о суперпозиции многих преобразований (как, например, в случае поворота относительно произвольной оси), то целесообразно использовать соответствующую матрицу поворота. Эффективность матричного подхода очень сильно возрастает, если матричные операции реализованы аппаратно. Вопрос о том, в каких случаях использовать матрицы, а в каких нет, во многом зависит от возможностей вычислительной техники, уровня сложности задачи и требований к временным характеристикам процесса визуализации.