
- •Лекция 1
- •1.1. Органические топлива
- •1.1.1. Классификация углеводородных горючих
- •1.1.2. Состав топлив
- •1.1.3. Характеристики топлив
- •1.1.4. Разновидности горения
- •1.1.5. Основные стадии гетерогенного горения
- •1.1.6. Фазы горения
- •Лекция 2
- •1.1.7. Скорость горения
- •1.2. Расчет процессов горения
- •2. Определение количества и состава продуктов сгорания.
- •1.2.1. Определение потребного количества окислителя для полного сжигания 1кг горючего
- •1.2.2. Определение массы воздуха для сжигания 1кг топлива
- •1.2.3. Коэффициент избытка воздуха
- •1.2.4. Определение количества и состава продуктов сгорания
- •1.2.5. Определение состава продуктов сгорания
- •1.2.6. Определение температуры конца сгорания
- •1.2.7. Упрощенная форма уравнения теплового баланса
- •Лекция 3
- •2.1. Основные понятия и определения термодинамики
- •2.2. Параметры состояния системы
- •2.3. Первый закон термодинамики. Работа и теплота.
- •2.4. Свойства рv – и Тs – диаграмм
- •Лекция 4
- •2.5. Термодинамические процессы идеальных газов
- •2.5.1. Политропный процесс
- •Вывод уравнения политропного процесса
- •Соотношения между параметрами состояния в политропном процессе
- •Определение изменения внутренней энергии
- •Определение изменения энтальпии
- •Определение изменения энтропии
- •Определение теплоты, подводимой (отводимой) в ходе политропного процесса
- •Определение работы расширения в ходе политропного процесса
- •2.5.2. Частные случаи политропного процесса
- •2.5.3. Изохорный процесс
- •2.5.4. Изобарный процесс
- •2.5.5. Изотермический процесс
- •2.5.6. Адиабатный процесс
- •2.5.7. Графическое изображение процессов
- •Лекция 5 сжатие газов в компрессорах
- •Работа компрессора.
- •Действительная индикаторная диаграмма компрессора.
- •Объемный кпд компрессора.
- •Гидравлические потери в распределительных органах компрессора.
- •Многоступенчатые компрессоры.
- •Лекция 6 истечение газов и паров Первый закон термодинамики для потока газа.
- •Адиабатное течение идеального газа по горизонтальному каналу без совершения технической работы.
- •Закон геометрического обращения воздействия
- •Определение скорости потока на выходе из канала
- •Массовый секундный расход газа
- •Анализ соплового течения газа через суживающееся сопло
- •Сопло Лаваля
- •Лекция 7 реальные газы
- •Устройство pv – диаграммы реального газа
- •Области pv- диаграммы
- •Уравнение состояния реального газа
- •Определение параметров влажного насыщенного пара
- •Диаграммы водяного пара
- •Лекция 8
- •Оновной закон теплопроводности. Гипотеза фурье.
- •В практике теплотехнических расчетов широко пользуются понятием теплового потока:
- •Конвекция
- •Процесс теплообмена между поверхностью твердого тела и жидкостью, омывающей поверхность, называется теплоотдачей.
- •Основной закон теплоотдачи. Уравнение ньютона – рихмана.
- •Теплопередача
- •Теплообмен излучением
- •Лекция 9 дифференциальное уравнение теплопроводности
- •Частные случаи дифференциального уравнения теплопроводности.
- •Для неподвижной среды (для твердого тела).
- •Дифференциальное уравнение теплопроводности для твердого тела в цилиндрической системе координат.
- •Простейший случай дифференциального уравнения теплопроводности для одномерного стационарного поля.
- •Краевые условия (условия однозначности).
- •Граничные условия.
- •Рассмотрим пример.
Определение параметров влажного насыщенного пара
Удельный объем влажного насыщенного пара находится из того, что в 1 кг его содержится x кг сухого пара и (1 - x) кг кипящей воды
v = v' (1-x) + v"x.
Энтальпия влажного насыщенного пара находится на основе следующих очевидных соображений. Точки a, b, c (рис. ) отвечают одному и тому же давлению (одной и той же температуре насыщения). Поэтому тепло, подводимое на участке bc может быть определено по разности энтальпий в крайних точках процесса
.
(1)
С другой стороны, q – это тепло, затраченное при p = const на получение из кипящей воды влажного пара, в каждом килограмме которого будет x кг сухого пара, т.е.
.
(2)
Совместное решение (1) и (2) дает
.
Энтропия
влажного насыщенного пара находится,
исходя из того, что она отличается от
энтропии кипящей воды на величину,
обусловленную количеством тепла,
подводимого на участке bc.
Поскольку на этом участке
,
постольку
или
.
Ко всему сказанному выше следует добавить, что величина внутренней энергии насыщенного пара в таблицах не приводится. Для всех состояний она определяется на основе значений p, h, v
.
Диаграммы водяного пара
В инженерной практике для определения параметров состояния и анализа процессов используются не только таблицы водяного пара, но и соответствующие диаграммы.
Наиболее распространены T-S - и особенно i-S - диаграммы.
TS - диаграмма (рис. 2) используется для процессов парообразования и конденсации. Это тепловая диаграмма.
Площадь Sa a b Sb - теплота парообразования.
hS - диаграмма (рис. 3).
Расчет процессов изменения состояния реального газа (водяного пара) (рис. 3).
1. Изохорный процесс (V = const) 1v - аv - 2v .
1v - аv - изохорная подсушка влажного насыщенного пара. В ходе этого степень сухости (х = 1) т.е. вся жидкая фаза превращается в парообразную.
Происходит увеличение температуры, давления, энтальпии и энтропии.
аv - 2v - изохорный перегрев пара (происходит увеличение температуры, давления, энтальпии и энтропии).
U1-2 = h2 - h1 - V(p2 - p1)
l = 0 - работа расширения
q1-2 = U1-2
2. Изобарный процесс (p = const) 1р - ар - 2р .
1р - ар - изобарная подсушка влажного насыщенного пара. В ходе этого степень сухости (х = 1) т.е. вся жидкая фаза превращается в парообразную.
Происходит увеличение энтальпии и энтропии при Р = const; T = const.
ар - 2р - изобарный перегрев пара (происходит увеличение температуры, энтальпии и энтропии при Р = const).
U1-2 = h2 - h1 - p(V2 - V1)
l = p (V2 - V1 ) – работа расширения
q1-2 = h2 - h1
3. Изотермический процесс (Т = const) 1т - ат - 2т .
1т - ат - изобарно - изотермическая подсушка влажного насыщенного пара. В ходе этого степень сухости (х = 1) т.е. вся жидкая фаза превращается в парообразную. Происходит увеличение энтальпии и энтропии при Р = const;
T = const (В идеальном газе при T = const - h = const , S = const).
В реальном газе учитывается потенциальная энергия межмолекулярных связей, поэтому происходит увеличение энтальпии и энтропии.
ат - 2т - изотермический перегрев пара (при T = const происходит увеличение энтальпии энтропии и внутренней энергии, уменьшается давление).
U1-2 = h2 - h1 - ( p2V2 - p1V1)
l = q - U
q1-2 = T(S2 -S1)
4. Адиабатный процесс (q = 0) 1s - 2s .
1s - 2s - адиабатное расширение.
При S = const понижается энтальпия, температура и давление.
U = h2 - h1 - ( p2V2 - p1V1)
l = U
q1-2 = 0
S = 0