Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции Техническая термодинамика и теплотехника...doc
Скачиваний:
27
Добавлен:
06.09.2019
Размер:
1.4 Mб
Скачать

Области pv- диаграммы

1. Область левее нижней пограничной кривой KI – это область некипящей жидкости.

2. Линия KI - это геометрическое место точек начала парообразования или конца конденсации. Иначе эту линию называют нижняя пограничная кривая. Степень сухости на нижней пограничной кривой равняется нулю (x = 0), а состояние вещества кипящая жидкость.

3. Область между KI и KII - область влажного насыщенного пара.

Это смесь сухого насыщенного пара с каплями жидкости (туманообразное состояние). Это двухфазное состояние.

Для того чтобы превратить 1 кг жидкости в пар, надо сообщить ей какое-то количество теплоты. Эту величину называют удельной теплотой парообразования r, кДж/кг.

4. Линия KII - это геометрическое место точек конца парообразования или начала конденсации. Линию KII иначе называют верхняя пограничная кривая. Степень сухости на верхней пограничной кривой равняется единице (x = 1), а состояние вещества сухой насыщенный пар.

Насыщенный пар - это пар, находящийся в динамическом равновесии с жидкостью.

5. Точка К - критическая точка.

6. Область правее и выше верхней пограничной кривой – это область перегретого пара.

Уравнение состояния реального газа

Одна из первых попыток создать уравнение состояния реального газа принадлежит голландскому физику Я. Ван дер Ваальсу (1873г.). На основе, главным образом, умозрительных заключений и идеи непрерывности газообразного и жидкого состояний вещества он предложил уравнение, охватывающее оба эти состояния

.

Это уравнение отличается от уравнения состояния идеального газа тем, что в него входят два дополнительных члена:

– дополнительное внутреннее давление, вызываемое взаимным приближением молекул;

b – суммарный объем молекул.

Входящие в уравнение Ван дер Ваальса константы а и b вместе с газовой постоянной R характеризуют индивидуальные свойства вещества.

К сожалению, равнение Ван дер Ваальса учитывает лишь объем молекул и их взаимодействие, что отвечает случаю парных взаимодействий между молекулами, т.е. случаю, результатом которого является лишь обмен энергией между молекулами при соударении. При возрастании плотности газа возрастает число случаев соударений, в которых участвует 3 и более молекул. При этом две и более молекул могут получить равную по величине и направлению скорость, т.е. двигаться как единое целое (ассоциация молекул), а избыток энергии уносится другими молекулами, участвующими в соударении. Таким образом, как бы сокращается число автономных частиц газа, что, естественно, отражается на его поведении.

В результате уравнение Ван дер Ваальса применимо лишь к области сравнительно малых скоростей. Ван дер Ваальсовский газ можно рассматривать как второе после идеального газа приближение к реальному газу.

Уравнение Ван дер Ваальса в принципе неприменимо к области, где вещество обладает резко выраженными свойствами реального газа (вблизи линии насыщения, околокритическая область), и тем более к области жидкости.

В связи с этим предпринималось большое число попыток вывода теоретически обоснованного уравнения состояния справедливого в достаточно широкой области состояний реального газа. Большой шаг вперед в этом направлении был сделан в 1937-1946 гг.независимо друг от друга американским физиком Дж. Майером и советским математиком Н.Н. Боголюбовым. С помощью методов статистической физики они показали, что уравнение состояния реального газа в наиболее общем виде выглядит следующим образом

.

Это уравнение носит название уравнения Майера-Боголюбова.

Здесь В и – вириальные коэффициенты, зависящие от потенциальной энергии взаимодействия молекул и температуры газа.

Чисто теоретическими методами они не могут быть вычислены и требуют ряда экспериментальных сведений.

Эта задача обычно оказывается настолько сложной, что более целесообразным путем является получение уравнения состояния в виде интерполяционной формулы, описывающей экспериментальные данные. В инженерной практике определение параметров состояния реального газа, анализ процессов изменения его состояния во многих случаях проводится на основе использования соответствующих таблиц и диаграмм. Их применение мы рассмотрим на примере такого широко используемого реального газа, каким является водяной пар.

Таблицы водяного пара

Имеются три таблицы водяного пара. В двух из них приведены параметры кипящей воды и сухого насыщенного пара, т.е. параметры, характеризующие состояния пара на нижней и верхней пограничных кривых.

Таблица 1

Рн

Тн

v’

v’’

h’

h’’

r

s’

s’’

бар

0С

м3

м3

кДж/кг

кДж/кг

кДж/кг

кДж/кг К

кДж/кг К

Таблица 2

Тн

Рн

v’

v’’

h’

h’’

r

s’

s’’

0С

бар

м3

м3

кДж/кг

кДж/кг

кДж/кг

кДж/кг К

кДж/кг К

В таблице 1 приведены указанные выше параметры в функции от давления кипения (насыщения), в таблице 2 – от температуры кипения (насыщения). В этих таблицах приводятся удельные объемы кипения воды (v’) и сухого насыщенного пара (v’’), соответственно их энтальпия (h’, h’’) и энтропия (s’, s’’). Кроме того, в этих таблицах приводится значение скрытой теплоты парообразования (h’’- h’ = r).

Таблица 3

Р / Т

0

10

20

30

40

0,01

V

h

s

0,02

V

h

s

пар

0,03

V

h

s

жидкость

0,04

В таблице 3 приведены в функции Р и Т значения v, h и s для воды, не нагретой до кипения, и для перегретого пара.

Таким образом, таблицами не охватывается область влажного насыщенного пара, параметры состояния которого определяются путем расчета с использованием таблиц 1 и 2.