
- •1. Основные понятия, определения и теоремы теории вероятностей*
- •1.1. Алгебра событий. Основые понятия теории множеств
- •1.2. Основные определения: испытание, событие. Классификация событий
- •1.3. Классическое определение вероятности. Свойства, вытекающие из этого определения
- •Значение вероятности
- •1.4. Основные теоремы теории вероятностей
- •1.5. Зависимые и независимые события
- •2. Формула полной вероятности и формула Бейеса
- •2.1. Формула полной вероятности
- •3. Случайные величины
- •3.1. Дискретные случайные величины
- •Ряд распределения случайной величины X
- •3.4. Ожидаемое среднее значение дискретной случайной величины
- •Вычисление математического ожидания числа рекламных
- •3.5. Свойства математического ожидания случайной дискретной величины
- •Возможные исходы лотереи
- •3.6. Ожидаемое среднее значение функции случайной величины
- •Ряд распределения числа месячных продаж
- •К вычислению среднего ожидаемого значения
- •3.7. Дисперсия дискретной случайной величины
- •К вычислению дисперсии случайной величины
- •3.9. Дисперсия линейной функции случайной величины
- •4. Законы распределения дискретных случайных величин
- •Формула Бернулли. Биномиальные вероятности
- •4.3. Биномиальный закон распределения
- •Биномиальное распределение
- •Биномиальное распределение X – числа гербов, появляющихся
- •Фрагмент таблиц ряда и функции биномиального распределения
- •Биномиальное распределение числа покупателей
- •Распределения
- •4.5. Распределение Пуассона
- •Закон распределения Пуассона
- •Сравнение вероятностей, полученных по формулам Бернулли и Пуассона
- •4.6. Гипергеометрическое распределение
- •Гипергеометрический закон распределения
- •Биномиальный закон распределения
- •Гипергеометрическое распределение
- •4.7. Производящая функция
- •4.8. Мультиномиальное распределение
- •4.9. Геометрическое распределение
- •5. Непрерывные случайные величины
- •6. Законы распределения непрерывных случайных величин
- •7. Закон больших чисел
- •7.1. Принцип практической уверенности. Формулировка закона больших чисел
- •7.2. Неравенства Маркова и Чебышева
- •7.3. Теорема Чебышева (частный случай)
- •7.4. Теорема Бернулли
- •7.5. Теорема Пуассона
7. Закон больших чисел
7.1. Принцип практической уверенности. Формулировка закона больших чисел
в литературе этот принцип иногда называется принципом практической невозможности маловероятных событий. Известно, что если событие имеет очень малую вероятность, то в единичном испытании это событие может наступить и не наступить. Но так рассуждаем мы только теоретически, а на практике считаем, что событие, имеющее малую вероятность, не наступает, и поэтому мы, не задумываясь, пренебрегаем им.
Но нельзя дать ответ в рамках математической теории на вопрос, какой должна быть верхняя граница вероятности, чтобы можно было назвать «практически невозможными» события, вероятности которых не будут превышать найденной верхней границы.
Пример. Рабочий изготавливает на станке 100 изделий, из которых одно в среднем оказывается бракованным. Вероятность брака равна 0,01, но ею можно пренебречь и считать рабочего неплохим специалистом. Но если строители будут строить дома так, что из 100 домов (в среднем) в одном доме будет происходить разрушение крыши, то вряд ли можно пренебречь вероятностью такого события.
Итак, в каждом отдельном случае мы должны исходить из того, насколько важны последствия в результате наступления события. При «практически достоверных» событиях, вероятность которых близка к единице, также встает вопрос о степени этой близости. Вероятность, которой можно пренебречь в исследовании, называется уровнем значимости.
Принцип практической уверенности. Если какое-нибудь событие имеет малую вероятность (например, р < 0.01), то при единичном испытании можно практически считать, что это событие не произойдет, а если событие имеет вероятность, близкую к единице (р > 0,99), то практически при единичном испытании можно считать, что событие произойдет наверняка.
Таким образом, исследователя всегда должен интересовать вопрос, в каком случае можно гарантировать, что вероятность события будет как угодно близка к 0 или как угодно близка к 1. Основной закономерностью случайных массовых явлений является свойство устойчивости средних результатов.
В широком смысле слова под «законом больших чисел» понимают свойство устойчивости случайных массовых явлений. Это свойство состоит в том, что средний результат действия большого числа случайных явлений практически перерастает быть случайным и может быть предсказан с достаточной определенностью. Свойство вытекает из того, что индивидуальные особенности отдельных случайных явлений, их отклонения от среднего результата в массе своей взаимно погашаются, выравниваются.
В узком смысле слова под «законом больших чисел» понимают совокупность теорем, в которых устанавливается факт приближения средних характеристик к некоторым постоянным величинам в результате большого числа наблюдений.
Различные формы закона больших чисел дают возможность уверенно оперировать случайными величинами, осуществлять научные прогнозы случайных явлений и оценивать точность этих прогнозов.
Формулировка закона больших чисел, развитие идеи и методов доказательства теорем, относящихся к этому закону, принадлежат русским ученым: П. Л. Чебышеву, А. А. Маркову и A. M. Ляпунову. В нашей работе некоторые формы закона больших чисел приводятся без доказательства.