
- •Электрические цепи
- •Анализ электрических цепей. Анализ цепей постоянного тока.
- •1.Определение электротехника.
- •2. Цепи постоянного тока.
- •Определение и временная диаграмма постоянного тока.
- •Элементы электрических цепей.
- •Параметры элементов.
- •5. Классификация электрических схем.
- •6. Топографические параметры схем замещения. Топографические параметры схем замещения.
- •Ход лекции:
- •Условно положительные направления тока, напряжения и эдс
- •Для простых цепей.
- •Для сложных схем с двумя и более источниками питания.
- •Режимы работы электротехнических устройств.
- •Основные законы электрических цепей.
- •Эквивалентное преобразование сопротивления.
- •Расчёт простых цепей постоянного тока методом эквивалентных преобразований сопротивлений.
- •Анализ сложных цепей постоянного тока.
- •Расчёт методом применения закона Кирхгофа.
- •Расчёт методом контурных токов.
- •Расчёт методом суперпозиции.
- •Расчёт методом узловых напряжений.
- •V. Метод эквивалентного генератора.
- •Цепи однофазного переменного тока.
- •Способы представления переменного синусоидального тока и напряжения.
- •Определение схем замещения по заданным векторным диаграммам токов и напряжений.
- •3. Конденсатор в цепи синусоидального тока
- •Анализ цепей синусоидального тока с помощью векторных диаграмм
- •Расчёт электрического состояния цепи с последовательным соединением элементов l, r, c.
- •Расчёт цепи с параллельным соединением r, l, c элементов
- •Мощность цепи синусоидального тока.
- •Коэффициент мощности и пути его улучшения.
- •Расчёт цепей с взаимосвязанными катушками индуктивности.
- •Трёхфазные цепи
- •Определение трёхфазной системы и её преимущество
- •Принцип получения трёхфазной системы эдс.
- •Способы представления.
- •Схемы соединения элементов трёхфазной системы.
- •Условно положительные направления величин.
- •Основные соотношения между напряжениями.
- •Анализ режимов работы трёхфазных нагрузок.
- •I. Соединение по схеме звезда с нейтральным проводом
- •II. Соединение трёхфазной нагрузки звездой без нейтрального провода (симметричная нагрузка).
- •III. Симметричная нагрузка, включённая по схеме «треугольник»
- •IV. Аварийные режимы при соединении нагрузки звездой.
- •Магнитные цепи
- •Основные физические явления, лежащие в основе принципа действия электромагнитных аппаратов.
- •Основные параметры магнитного поля.
- •Поведение веществ в магнитном поле.
- •IV. Определение магнитных цепей и их классификация.
- •Основные законы, используемые при расчёте магнитных цепей.
- •Расчёт магнитной цепи постоянного тока. Решение прямой задачи.
- •Машины постоянного тока.
- •Область применения. Достоинства и недостатки.
- •Устройство мпт.
- •Принцип действия
- •Классификация мпт по способу возбуждения.
- •Потери мощности и кпд мпт
- •Двигатели постоянного тока
- •Двигатель параллельным возбуждением
- •Двигатель с последовательным возбуждением. (Сериесный дпт)
- •Компаудный дпт (Смешанное возбуждение)
- •Однофазный трансформатор
- •Классификация и область применения.
- •Электрическая схема и принцип действия.
- •III. Полная схема замещения трансформатора.
- •Экспериментальное определение параметров схемы замещения трансформаторов.
- •Опыт при холостом ходе.
- •Опыт короткого замыкания.
- •Упрощенная схема замещения трансформатора и внешняя характеристика.
- •Потери мощности и кпд трансформатора.
- •Машины переменного тока.
- •Асинхронный двигатель.
- •I. Устройство и условное обозначение на схемах.
- •II. Получение вращающегося магнитного поля и принцип действия ад.
- •III. Схема замещения и векторная диаграмма асинхронного двигателя
- •IV. Электромагнитный момент
- •V. Механическая характеристика
- •VI. Способы пуска
- •VII. Регулирование частоты вращения двигателя
- •VIII. Однофазный асинхронный двигатель
- •Синхронные машины
- •Назначение, преимущество и недостатки.
- •Устройство Синхронной машины
- •Принцип действия и режимы работы синхронной машины
Расчёт методом контурных токов.
Определение кол-ва узлов К=4, m=6
Находим независимые контуры и для каждого задаётся произвольно положительное направление контурного тока. Контурный ток – ток, обтекающий ветви своего независимого контура.
Составляем уравнения по второму закону Кирхгофа , учитывая все контурные токи, протекающие по ветвям выбранного контура.
I: E1=Ik1I(R1+R3+R4)-Ik2R3-Ik3R4
II: E2-E5=Ik2(R2+R3)-R3Ik1-Ik3R5
III. E5= Ik3(R4+R6+R7)-Ik1R4-Ik20
Решая систему уравнений например, методом Крамера, найдём контурные токи:
Ik1=Δ1/Δ Ik2= Δ2/Δ Ik3=Δ3/Δ
Δ
– коэффициент при контурных токах
R1+R3+R4 -R3 -R4
Δ= -R3 R2+R3 0
-R4 0 R4+R6+R7
Δ1, Δ2, Δ3 получают заменой к-того столбца на левую часть уравнений.
Произвольно обозначаем направление токов в ветвях.
Выражаем токи в ветвях через алгебраическую сумму прилегающих контурных токов: контурный ток, совпадающий с током в ветви, записывают с плюсом.
I1=Ik1 I4=Ik1-Ik3
I2=Ik2 I5=Ik2-Ik3
I3=Ik1-Ik2 I67=Ik3
по полученным значениям уточняем реальные направления токов в ветвях и определяем режимы работ.
Проверка режимов баланса мощностей.
Достоинства метода: более короткий алгоритм
Недостатки метода: необходимо знание этого алгоритма.
Область применения: очень широкая для расчёта тока в разветвленных ветвях.
Расчёт методом суперпозиции.
В электротехнике принцип суперпозиции проявляет себя как принцип независимости действия ЭДС. Согласно этому принципу каждая ЭДС возбуждает в любой ветви свою долю тока – частичный ток. Результирующий ток в ветви определяется как алгебраическая сумма частичных токов.
Задаём произвольное направление тока в ветвях.
Создаём первую частичную схему замещения: из исходной схемы замещения выбрасываем все источники ЭДС, кроме первого, но оставляем их внутреннее сопротивление. Находим частичные токи в ветвях методом свёртки схемы.
R34=R3+R4
Создаём вторую частичную схему замещения: выбрасываем все источники ЭДС, кроме второго и оставляем их внутренние сопротивления.
R34=R3+R4
Е2
Rэ2=R2+R134
Создаём третью частичную схему замещения аналогично прошлым.
R34=R3+R4
Rэ3 = R12+R34
Наложив частичные схемы одну на другую, определяем результирующий ток в каждой ветви как алгебраическую сумму частичных токов.
Истинное направление токов на исходной схеме замещения определяем по результатам аналитического расчёта по правилу:
Если значение тока положительно, то направление тока угадано верно, если значение тока отрицательно, то реальное направление тока противоположно.
Алгоритм метода прост, требует знание только закона Ома, однако не производительный, поэтому для полного анализа сложной электрической цепи не применяется. Рекомендуется для частичного анализа цепи.