
- •Электрические цепи
- •Анализ электрических цепей. Анализ цепей постоянного тока.
- •1.Определение электротехника.
- •2. Цепи постоянного тока.
- •Определение и временная диаграмма постоянного тока.
- •Элементы электрических цепей.
- •Параметры элементов.
- •5. Классификация электрических схем.
- •6. Топографические параметры схем замещения. Топографические параметры схем замещения.
- •Ход лекции:
- •Условно положительные направления тока, напряжения и эдс
- •Для простых цепей.
- •Для сложных схем с двумя и более источниками питания.
- •Режимы работы электротехнических устройств.
- •Основные законы электрических цепей.
- •Эквивалентное преобразование сопротивления.
- •Расчёт простых цепей постоянного тока методом эквивалентных преобразований сопротивлений.
- •Анализ сложных цепей постоянного тока.
- •Расчёт методом применения закона Кирхгофа.
- •Расчёт методом контурных токов.
- •Расчёт методом суперпозиции.
- •Расчёт методом узловых напряжений.
- •V. Метод эквивалентного генератора.
- •Цепи однофазного переменного тока.
- •Способы представления переменного синусоидального тока и напряжения.
- •Определение схем замещения по заданным векторным диаграммам токов и напряжений.
- •3. Конденсатор в цепи синусоидального тока
- •Анализ цепей синусоидального тока с помощью векторных диаграмм
- •Расчёт электрического состояния цепи с последовательным соединением элементов l, r, c.
- •Расчёт цепи с параллельным соединением r, l, c элементов
- •Мощность цепи синусоидального тока.
- •Коэффициент мощности и пути его улучшения.
- •Расчёт цепей с взаимосвязанными катушками индуктивности.
- •Трёхфазные цепи
- •Определение трёхфазной системы и её преимущество
- •Принцип получения трёхфазной системы эдс.
- •Способы представления.
- •Схемы соединения элементов трёхфазной системы.
- •Условно положительные направления величин.
- •Основные соотношения между напряжениями.
- •Анализ режимов работы трёхфазных нагрузок.
- •I. Соединение по схеме звезда с нейтральным проводом
- •II. Соединение трёхфазной нагрузки звездой без нейтрального провода (симметричная нагрузка).
- •III. Симметричная нагрузка, включённая по схеме «треугольник»
- •IV. Аварийные режимы при соединении нагрузки звездой.
- •Магнитные цепи
- •Основные физические явления, лежащие в основе принципа действия электромагнитных аппаратов.
- •Основные параметры магнитного поля.
- •Поведение веществ в магнитном поле.
- •IV. Определение магнитных цепей и их классификация.
- •Основные законы, используемые при расчёте магнитных цепей.
- •Расчёт магнитной цепи постоянного тока. Решение прямой задачи.
- •Машины постоянного тока.
- •Область применения. Достоинства и недостатки.
- •Устройство мпт.
- •Принцип действия
- •Классификация мпт по способу возбуждения.
- •Потери мощности и кпд мпт
- •Двигатели постоянного тока
- •Двигатель параллельным возбуждением
- •Двигатель с последовательным возбуждением. (Сериесный дпт)
- •Компаудный дпт (Смешанное возбуждение)
- •Однофазный трансформатор
- •Классификация и область применения.
- •Электрическая схема и принцип действия.
- •III. Полная схема замещения трансформатора.
- •Экспериментальное определение параметров схемы замещения трансформаторов.
- •Опыт при холостом ходе.
- •Опыт короткого замыкания.
- •Упрощенная схема замещения трансформатора и внешняя характеристика.
- •Потери мощности и кпд трансформатора.
- •Машины переменного тока.
- •Асинхронный двигатель.
- •I. Устройство и условное обозначение на схемах.
- •II. Получение вращающегося магнитного поля и принцип действия ад.
- •III. Схема замещения и векторная диаграмма асинхронного двигателя
- •IV. Электромагнитный момент
- •V. Механическая характеристика
- •VI. Способы пуска
- •VII. Регулирование частоты вращения двигателя
- •VIII. Однофазный асинхронный двигатель
- •Синхронные машины
- •Назначение, преимущество и недостатки.
- •Устройство Синхронной машины
- •Принцип действия и режимы работы синхронной машины
IV. Определение магнитных цепей и их классификация.
Магнитная цепь – объём из ферромагнитного материала, предназначенный для распределения магнитного потока и содержащий кроме того источник МДС в качестве источника МДС могут использоваться постоянные магниты или электромагниты постоянного или переменного тока.
Классификация магнитных цепей.
По типу МДС
- магнитные цепи с постоянной МДС
- магнитные цепи с переменной МДС
По параметрам
- однородные мц, у которых на всей длине магнитные цепи сечение, материал и индукция одинаковой по всей длине мц
- неоднородные мц
По количеству источников МДС
- простые
- сложные
По виду:
- разветвлённые мц
- неразветвлённые
По наличию воздушных зазоров.
- замкнутые
-разомкнутые
Основные законы, используемые при расчёте магнитных цепей.
Закон полного тока:
Линейный интеграл по замкнутому контуру магнитной силовой линии от падения магнитного (Hili) = полному току, охватываемому этой силовой линией.
I1-I2+I3=Iполн
В технических расчётах применяют приближённое значение.
Где сумма произведений напряжённого магнитного поля на длину участка магнитной цепи равна магнитодвижущей силе или полному току.
Первый закон Кирхгофа для магнитной цепи.
Алгебраическая сумма магнитных потоков в узле магнитной цепи равна нулю.
Ф1 – Ф2 – Ф3=0
Второй закон Кирхгофа для магнитной цепи.
Алгебраическая сумма МДС равна алгебраической сумме падений напряжений на участках замкнутого магнитного контура.
Закон Ома для магнитной цепи.
Аналогия:
Электрические цепи Магнитные цепи
I Ф
E F
R Rмагн
Ток – направленное движение распределение магнитных волн
Электронов
,
где для однородной магнитной цепи
lм – длина магнитной линии
µ - относительная магнитная проницаемость
Происходит «выпучивание» магнитных силовых линий Из-за выпучивания магнитного потока площадь сечения воздуха не равна площади сечения сердечника.
Расчёт магнитной цепи постоянного тока. Решение прямой задачи.
Исходные данные:
Заданы длины l01, l12, l23, l34, l45 – длины магнитных участков цепи.
Задан материал сердечника, а следовательно задана магнитная проницаемость среды и кривая намагничивания.
Заданы размеры сечения сердечника Sм учитывая наше допущение Sм=SВ. F=WI, то есть необходимо найти ток, протекающий по катушке.
По 2-му закону Кирхгофа запишем
Определяем напряжённость магнитного поля в воздушном зазоре
Определяем индукцию ВВ в воздушном зазоре и в магнитной цепи
Напряжённость стали определяем по кривой намагничивания
Найдём F, а затем
Обратной задачи
Задан ток, а надо найти магнитный поток. Исходные данные те же самые,что и в прямой задачи.
Задача решается графоаналитическим способом, то есть путём построения Вебер-Амперной характеристики, то есть зависимость Ф от I.
Задаёмся произвольно каким-то Ф’ и решаем прямую задачу
и так далее.
Строим график по точкам.
По заданному Fзад определяем искомую величину магнитного потока.
Лекция №9