
- •Часть 2
- •240901 «Биотехнология», 240706 «Автоматизированное производство химических предприятий» по курсу «Основные процессы и аппараты химических технологий» и для студентов специальностей
- •260601 «Машины и аппараты пищевых производств»,
- •260204 «Технология бродильных производств и виноделие» по курсу «Процессы и аппараты пищевых производств»
- •Содержание
- •Предисловие
- •Модуль 5. Гидромеханические процессы
- •5.1 Классификация гидромеханических процессов
- •5.2 Неоднородные системы и их свойства
- •5.2.1 Классификация неоднородных систем
- •5.2.2 Свойства неоднородных систем
- •5.2.3 Разделение неоднородных систем
- •5.3 Осаждение
- •5.4 Осаждение в гравитационном поле
- •5.4.1 Классификация отстойников
- •5.4.2 Расчет отстойников
- •5.5 Фильтрование
- •5.5.1 Кинетика процесса фильтрования
- •5.5.2 Расчет процесса фильтрования
- •5.5.3 Классификация фильтров
- •5.6 Разделение газовых неоднородных систем
- •5 Рисунок 5.15 – Схема Пылеосадительной камеры .6.1 Очистка газов в поле сил
- •5.6.2 Очистка газов в центробежном поле
- •5.6.3 Расчет циклона
- •5.6.4 Осаждение в электрическом поле
- •5.6.5 Мокрая очистка газов
- •5.6.6 Расчет аппаратов мокрой очистки газов
- •5.7 Выбор аппарата для разделения неоднородных систем
- •5.7.1 Аппараты для очистки газов
- •5.7.2 Аппараты для разделения суспензий
- •5.8 Образование неоднородных систем
- •5.8.1 Перемешивание
- •5.8.2 Псевдоожижение
- •Вопросы для самоконтроля
- •Модуль 6. Тепловые процессы
- •6.1 Промышленные способы подвода и отвода тепла
- •6.1.1 Греющие теплоносители
- •6.1.2 Хладоагенты
- •6.1.3 Водооборотные циклы химических производств
- •6.2 Теплообменные аппараты
- •6.2.1 Классификация теплообменных аппаратов
- •6.2.2 Кожухотрубчатые теплообменные аппараты
- •6.2.3 Змеевиковые теплообменные аппараты
- •6.2.4 Теплообменники с оребренными трубами
- •6.2.5 Методика теплового расчета
- •Б) уточненный или проверочный расчет, необходимость которого возникает, например, если в результате проектировочного расчета был выбран нормализованный аппарат со значительным запасом поверхности:
- •6.3 Выпаривание
- •6.3.1 Виды выпаривания
- •6.3.2 Материальный и тепловой баланс выпарного аппарата
- •6.3.3 Температура кипения раствора и температурные потери
- •6.3.4 Выпаривание в многокорпусных установках
- •Принципиальная схема противоточной двухкорпусной выпарной установки изображена на рисунке 6.11.
- •6.3.4.3 Комбинированная схема выпаривания
- •6.3.4.4 Материальный баланс многокорпусной выпарной установки
- •6.3.4.5 Тепловой баланс многокорпусной выпарной установки
- •6.3.5 Выпаривание с тепловым насосом
- •6.3.6 Классификация выпарных аппаратов
- •6.3.7 Выпарные аппараты с естественной циркуляцией
- •6.3.8 Выпарные аппараты с принудительной циркуляцией
- •6.3.9 Расчет выпарного аппарата
- •6.3.10 Выбор числа корпусов
- •6.3.11 Вспомогательное оборудование выпарной установки
- •Вопросы для самоконтроля
- •Модуль 7. Массообменные процессы в системах со свободной границей раздела фаз
- •7.1 Абсорбция
- •При выборе абсорбента к нему предъявляется ряд требований:
- •7.1.1 Физическая сущность процесса абсорбции
- •7.1.2 Равновесие при физической абсорбции
- •7.1.3 Материальный баланс абсорбции
- •7.1.4 Кинетика процесса абсорбции
- •7.1.5 Промышленные схемы абсорбции
- •7.1.6 Конструкции абсорберов
- •7.1.7 Насадочные аппараты
- •7.1.8 Тарельчатые аппараты
- •7.1.9 Расчет абсорберов
- •7.2 Перегонка и ректификация
- •7.2.1 Физическая сущность процесса
- •7 Рисунок 7.13 – Физическая сущность перегонки .2.2 Равновесие в системе «жидкость – пар»
- •7 Рисунок 7.14 – Диаграммы равновесия в системе «Жидкость жидкость» .2.3 Ректификация
- •7.2.4 Описание схемы процесса непрерывной ректификации
- •7.2.5 Расчет ректификационной установки непрерывного
- •7.2.6 Тепловой расчет колонны
- •7.2.7 Специальные методы ректификации
- •7.3 Жидкостная экстракция
- •7.3.1 Принципиальная схема процесса
- •7.3.2 Выбор экстрагента
- •7.3.3 Равновесие в системе «жидкость жидкость»
- •7.3.4 Кинетика экстракции
- •7.3.5 Принципиальные схемы экстракции
- •7.3.6 Классификация экстракторов
- •7.3.7 Расчет экстракторов
- •7.3.8 Способы повышения интенсивности процесса
- •Вопросы для самоконтроля
- •Модуль 8. Массообменные процессы с участием твердой фазы
- •8.1 Сушка
- •8.1.1 Принципиальная схема процесса
- •8.1.2 Выбор сушильного агента
- •8.1.3 Основные свойства влажного воздуха
- •IX для влажного воздуха
- •8.1.4 Равновесие процесса сушки
- •8.1.5 Материальный баланс сушки
- •8.1.6 Тепловой баланс конвективных сушилок
- •8.1.7 Схемы процессов сушки
- •8.1.8 Кинетика процесса сушки
- •8.1.9 Расчет сушилок
- •8.2 Кристаллизация
- •8.2.1 Принципиальная схема кристаллизации
- •8.2.2 Равновесие процесса кристаллизации
- •8.2.3 Материальный баланс кристаллизации
- •8.2.4 Тепловой баланс кристаллизации
- •8.2.5 Кинетика процесса
- •8.2.6 Конструкции аппаратов
- •8.3 Адсорбция
- •8.3.1 Принципиальная схема адсорбции
- •8.3.2 Равновесие процесса адсорбции
- •8.3.3 Кинетика адсорбции
- •8.3.4 Классификация адсорберов
- •1 Цилиндрический корпус; 2 решетка; 3,4 штуцеры
- •8.3.5 Расчет адсорберов
- •8.4 Мембранные процессы
- •8.4.1 Физическая сущность процесса
- •8.4.2 Классификация мембран
- •8.4.3 Расчет мембранных процессов
- •Вопросы для самоконтроля
- •Приложение а
- •Основные термины и определения
- •Список рекомендуемой литературы Общий
- •К модулю № 5
- •К модулю № 6
- •К модулю № 7
- •К модулю № 8
- •Часть 2
7.1.7 Насадочные аппараты
Насадочные абсорберы представляют собой колонны, заполненные насадкой. Жидкость стекает по поверхности насадочных тел в виде тонкой пленки. Контакт газа со стекающей жидкостью происходит по поверхности смоченной насадки, поэтому насадка должна иметь как можно большую поверхность в единице объема.
Для того чтобы насадка работала эффективно, она должна удовлетворять следующим основным требованиям:
– обладать большой поверхностью в единице объема;
– хорошо смачиваться орошающей жидкостью;
– оказывать малое гидравлическое сопротивление газовому потоку;
– равномерно распределять орошающую жидкость;
– быть стойкой к химическому воздействию жидкости или газа, движущихся в колонне;
– иметь малую плотность;
– обладать высокой механической прочностью;
– иметь невысокую стоимость.
Насадок, полностью удовлетворяющих всем указанным требованиям, не существует, так как, например, увеличение удельной поверхности насадки влечет за собой увеличение гидравлического сопротивления аппарата и снижение предельных нагрузок. В промышленности применяют разнообразные по форме и размерам насадки, которые в той или иной мере удовлетворяют требованиям, являющимся основными при проведении конкретного процесса. Практическое значение имеют хордовая и кольцевая насадки, спиральная и сетчатая металлические насадки.
При работе насадочных аппаратов наблюдаются следующие гидродинамические режимы: пленочный, подвисания, эмульгирования и режим захлебывания (рисунок 7.11).
Первый режим – пленочный – жидкость стекает в виде пленки. Этот режим наименее интенсивный, но наиболее распространен из-за низкого гидравлического сопротивления.
Второй – режим подвисания – жидкость задерживается в каналах насадки; скорость течения жидкости уменьшается, а толщина ее пленки и количество удерживаемой жидкости увеличиваются. Газ и жидкость наиболее турбулизованы, увеличивается коэффициент массопередачи.
Третий – режим эмульгирования – газ пробулькивает через жидкость; жидкость накапливается в свободном объеме насадки, соответствует максимальной эффективности насадочных колонн. Коэффициент массопередачи имеет наибольшее значение. Этот режим обладает недостатками: его трудно поддерживать, резко повышается гидравлическое сопротивление, снижается движущая сила процесса.
Ч
1 – сухая насадка;
2 – орошаемая
насадка
Рисунок 7.11 –
Зависимость
гидравлического
сопротивления насадки от скорости газа
Основным показателем работы насадочной колонны является гидравлическое сопротивление, которое определяет энергетические затраты на перемещение газа через аппарат и служит важным показателем режима работы и состояния насадки в колонне.
7.1.8 Тарельчатые аппараты
Представляют собой вертикальные цилиндрические колонны, в которых на определенном расстоянии друг от друга по высоте колонны размещены горизонтальные перегородки – тарелки для развития поверхности контакта фаз.
Процесс массопереноса в тарельчатых колоннах осуществляется в газожидкостной среде, которая создается на тарелках. Следовательно, процесс проходит ступенчато, в отличие от насадочных колонн, в которых массоперенос происходит непрерывно.
По способу слива жидкости с тарелки, аппараты подразделяются на колонны с тарелками со сливными устройствами и без сливных устройств «провальные» (рисунок 7.12).
В «провальных» тарелках отсутствуют переливные трубы. При этом одновременно с взаимодействием фаз на тарелке происходит сток жидкости на нижерасположенную тарелку – «проваливание» жидкости.
Тарелки со сливными устройствами бывают колпачковые (рисунок 7.12а), ситчатые (рисунок 7.12б) и клапанные (рисунок 7.12в). Режимы работы тарельчатых колонн, как и насадочных, определяются скоростью газа.
Пузырьковый (барботажный) режим работы характеризуется небольшими скоростями газа, газ в виде отдельных пузырьков движется через слой жидкости.
Пенный режим возникает при увеличении скорости газа, когда на тарелке образуется газожидкостная система пена.
С
а
– колпачковые тарелки; б – ситчатые
тарелки; в – клапанные тарелки
Рисунок 7.12 – Типы
тарелок с переливными устройствами